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A FORMULA FOR CUBIC MEASUREMENT ON A PLANE 

Gabriel Poveda Ramos1

ABSTRACT 
Formulas are derived to calculate with approximated approximation, formulas that allow numerical evaluation 

of double integrals and triple integrals on flat two-dimensional surfaces, by means of measurements of the integrating 
function values, taken in a grid that is plotted in the plane. The method is analogous to that used to derive Simpson's 
formula for a simple integral.

KEYWORDS: Numerical Analysis; Numerical integration; Integral calculus. 

UNA FÓRMULA DE CUBICACIÓN SOBRE EL PLANO

RESUMEN
Se deducen fórmulas para calcular con aproximación acotada, fórmulas que permiten valorar numéricamente in-

tegrales dobles e integrales triples sobre superficies bidimensionales planas, mediante mediciones de los valores de la 
función integrando, tomadas en una retícula cuadriculada que se trace en el plano. El método es análogo al que se usa 
para deducir la fórmula de Simpson para una integral simple.

PALABRAS CLAVE: Análisis Numérico; Integración numérica; Cálculo Integral.

UMA FÓRMULA DE CUBICAÇÃO NO PLANO

RESUMO
As fórmulas são derivadas para calcular com aproximação aproximada, fórmulas que permitem a avaliação nu-

mérica de integrais duplas e integrais triplas em superfícies bidimensionais planas, por meio de medições dos valores 
de função de integração, tomadas em uma grade que é plotada no plano. O método é análogo ao usado para derivar a 
fórmula de Simpson para uma integral simples.

PALAVRAS-CHAVE: Análise Numérica; Integração numérica; Cálculo integral.
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1.  Those who study integral calculus or any 
of its numerous applications know the definite 
integration formula known as Simpson’s Rule, 
which is used to approximately compute a definite 
integral in the case of a function that is described by 
its values in equidistant points. As you remember, 
the rule is 

�
𝑥𝑛

𝑥𝑜
   𝑓(𝑥) ∙ 𝑑𝑥 = (𝑦𝑜  + 4𝑦1  + 2𝑦2  + 4𝑦3  + 2𝑦4  
+ ⋯ 4𝑦𝑛−1  + 𝑦𝑛)  × (𝑥𝑛  − 𝑥𝑜) ⁄3𝑛

where the symbols have the meaning shown 
in Drawing 1. It is worth remembering two 
characteristic features of this formula:

1. The number of equidistant values used 
is: o 3, o 5, o 7,…, or, in general, an odd 
number in the form of 𝑛 + 1

2. The sum of the coefficients of said 
terms is 3𝑛

3. The number of intervals between two 
consecutives (𝑦𝑖 , 𝑦𝑖+1) is 𝑛 and is even

4. The sum of said intervals is 𝑥𝑛 −𝑥𝑜

2.  It is surprising that in the didactic 
mathematical literature there is almost no mention 
of the evident fact that just as one deduces 
Simpson’s quadrature formula, so can one deduce 
a formula for volume measurement to calculate 
(even approximately) the value of double integrals 
defined on a region R of the plane, in two variables, 
that is, integrals of the form

�
𝑅 

 𝑓(𝑥, 𝑦) 𝑑𝑥 ∙ 𝑑𝑦                    (2.1) 

An integral in this form expresses the volume 
contained between the surface and the plane 
determined by the Cartesian axes 𝑂𝑋, 𝑂𝑌, which 
are perpendicular to each other and perpendicular 
to 𝑂𝑍. For this reason, such a formula can 
have numerous applications. Examples of such 
applications would be:

a. To calculate the volume held in a reservoir 
knowing a sufficiently refined depth grid

b. To calculate the mineral content of a hill, 
knowing its horizontal grid and mineral tenors for 
each probe up to a determined depth

It is worth noting that in mathematics 
textbooks commonly used in our schools, in general, 
the topic of formulas for the approximation of 
volume is rarely mentioned, even in good texts 
about numerical analysis. The purpose of this note 
is to deduce a formula for volume measurement “in 
the manner of Simpson” and to show how it could 
be used.

3. First: consider the problem of calculating a 
volume between a quadric surface in two variables 
and the plane of the two axes 𝑂𝑋 and 𝑂Y.

Let this be the quadric surface

𝑧(𝑥, 𝑦) = 𝑎 + 𝑏1𝑥 + 𝑏2𝑥2  + 𝑐1𝑦 + 𝑐2𝑦2  + 𝑑𝑥𝑦 (3.1)  

Where 𝑎 , 𝑏1,  𝑏2,  𝑐1,  𝑐2,  𝑑 are real constants such 
that the coefficient of the second degree terms are 
not null, meaning such that

𝑏2
2  + 𝑐2

2  + 𝑑2  > 0                       (3.2)

Consider on the other hand, the region of plane 
𝑂𝑋𝑌 formed by the 𝑅  chart shown in Fig. 2, and 
whose vertices are the four points (1,0), (0,1), (-1,0) 
and (0,-1). Its surface measures, as is evident, 2 units 
of area. Calculating the function z(𝑥, 𝑦) in the center 
of the square and its four corners, one obtains

𝑧(0, 0) = 𝑧0  =   𝑎 

𝑧(1, 0) = 𝑧1   =  𝑎 + 𝑏1  + 𝑏2

𝑧(0, 1) = 𝑧2  =  𝑎 + 𝑐1  +  𝑐2

𝑧(−1, 0) = 𝑧3  =  𝑎 − 𝑏1  +  𝑏2

𝑧(0, −1) = 𝑧4  =  𝑎 − 𝑐1  + 𝑐2

Inverting this system, one obtains the 
coefficients 𝑎 , 𝑏1,  𝑏2,  𝑐1,  𝑐2, in terms of the dimensions 
𝑧0,  𝑧1,  𝑧2,  𝑧3,  4 of the surface (𝑥, 𝑦) on the plane 𝑂𝑋𝑌:

𝑎 = 𝑧0

𝑏1  =  (1⁄2)  (𝑧1  − 𝑧3) 

𝑏2  =  (1⁄2)  (𝑧1  + 𝑧3)  − 𝑧0

𝑐1  =  (1⁄2)  (𝑧2  − 𝑧4) 

𝑐2  =  (1⁄2)  (𝑧2  + 𝑧4)  − 𝑧0
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Thus, the five coefficients are determined by 
the values of 𝑧(𝑥, 𝑦) on the five points indicated in 
the square 𝑅 , and the equation of the quadric surface 
can be written as a determinant as

1 𝑥 𝑥2 𝑦 𝑦2 𝑧
1 0 0 0 0 𝑧0

1 1 1 0 0 𝑧1 = 0
1 0 0 1 1 𝑧2

1 -1 1 0 0 𝑧3

1 0 0 -1 1 𝑧4

Figure 1

Figure 2

Figure 3

4.  The volume that covers z(𝑥, 𝑦) over region 𝑅 
(whose area measures 2 units) is the integral

𝑉 = 
�
𝑅 

𝑧(𝑢, 𝑣) 𝑑𝑢 ∙ 𝑑𝑣 = 

=  
�
𝑅 

(𝑎 +𝑏1𝑢+ 𝑏2𝑢2 +𝑐1𝑣 +𝑐2𝑣2) 𝑑𝑢 ∙ 𝑑𝑣

 (4.1)

The value of these integrals can be calculated 
term to term:

�
𝑅 

𝑑𝑢 ∙ 𝑑𝑣 = 2

�

𝑅 
𝑢∙𝑑𝑢∙𝑑𝑣 �

0

�
𝑣= 1+𝑢

𝑢∙𝑑𝑢∙𝑑𝑣 �
1

�
𝑣= 1−𝑢

𝑢∙𝑑𝑢∙𝑑𝑣
−1 𝑣= −(1+𝑢) 0 𝑣= −(1−𝑢) 

�
𝑅 

𝑢2∙ 𝑑𝑢 ∙ 𝑑𝑣 = 1/3

�
𝑅 

𝑣 ∙ 𝑑𝑢 ∙ 𝑑𝑣 = 0

 
�
𝑅 

𝑣2∙ 𝑑𝑢 ∙ 𝑑𝑣 = 1/3

�
𝑅 

𝑢 ∙ 𝑣 ∙ 𝑑𝑢 ∙ 𝑑𝑣 = 0

Consequently, one obtains

𝑉 = 2𝑎 + 𝑏2⁄3 + 𝑐2⁄3 (4.2)

And substituting the values of the coefficients, 
we have:

𝑉 = [(4⁄3) ] 𝑧0  + (1⁄6)  (𝑧1 + 𝑧2 + 𝑧3 + 𝑧4) (4.3)

By way of verification of this formula it can be 
seen that if the surface that covers 𝑅 is the plane  𝑧(𝑥, 
𝑦) = 1, the volume in question is a parallelepiped of 
base 𝑅 with an are a e qual to 2 and he ight e qual to 1, 
who s e  vo lume  is  2 cubic units . This  is  pre cis e ly what 
is  s tate d  in the  fo rmula be lo w:

𝑉 = [(4⁄3) × 1 + (1⁄6)  (1 + 1 + 1 + 1) ]  =  
12⁄6 =  2 (cubic units ) 
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Figure 4

Figure 5

This formula (4.3) expresses the volume sought 
as a linear combination of the five dimensions 𝑧𝑜,  𝑧1,  
𝑧2,  𝑧3 y 𝑧4, in which it should be noted that the sum 
of the five coefficients is equal to 2, as seen above.

5. Considering that there is a rectangle 
formed by two squares on side 𝑘 jo ine d by o ne o f
its  s id e s ,  as  in Figure 3, in plane 𝑂𝑋𝑌, and that o n 
it,  in the  s pace ,  is  the  quad ric s urface 

𝑧(𝑥, 𝑦) = 𝑎 + 𝑏, 𝑥 + 𝑏2𝑥2  + 𝑐1𝑦 + 𝑐2𝑦2  + 𝑑𝑥𝑦

accompanied by the condition (3.2), we see 
that the volume of the quadric above the rectangle 

is obtained by applying formula (4.3) to the two 
squares and adding. Thus, one obtains

𝑉 = [(4⁄3) (𝑧11  + 𝑧31  + (1⁄6)  (𝑧00  + 𝑧02  
+ 𝑧40  + 𝑧42)  + (1⁄3) (𝑧20  + 𝑧22) ]  𝑘 2⁄2

(5.1)

Where 𝑧ℎ𝑘  =  𝑧(𝑥ℎ,  𝑦𝑘 )  is  the  d ime ns io n o f the  
quad ric at the  co o rd inate  po int 𝑥ℎ , 𝑦𝑘 .

6. Juxtaposing one square to the other, each 
pair of them joined by one of their sides, a figure 
such as that shown in Figure 4 can be formed. The 
perimeter of this figure is a polygon 𝑃0𝑃1𝑃2 ⋯ 𝑃𝑛−1𝑃𝑛 
who s e  s ucce s s ive  po ints  are  e quid is tant. Fo r s o me  
o f the s e  po ints  the  two  ad jace nt s e gme nts  at the  
po int are  co lline ar,  s uch is  the  cas e  o f 𝑃2,  𝑃4,  𝑃6,  𝑃8,  
𝑃9, etc. We will call these points flat nodes.

At some other points of the polygon the two 
adjacent segments form a 90° angle with respect to 
the interior of the polygon as occurs in 𝑃1,  𝑃3,  𝑃7,  𝑃11,  
𝑃14,  etc. We will call these points convex nodes. And 
at points like 𝑃0,  𝑃5,  𝑃13,  ⋯,  whe re  an angle  o f 270° 
is  fo rme d  with re s pe ct to  the  inte rio r o f the  po lygo n,  
we  will call the m co ncave  no d e s . If 𝑝 is the numbe r
o f co ncave  no d e s ,  it e as ily d e mo ns trate s  that the  
numbe r o f co nve x no d e s  is  𝑝 + 4. Each flat point 
belongs to two squares, each convex corner belongs 
to a square, and each concave corner belongs to three 
squares. At points like 𝑄1,  𝑄2, etc. that belong to four 
squares, we will call them internal nodes. The centers 
of the squares will be called 𝐶1,  𝐶2 ,  ⋯,  etc.

7. The volume that a quadric surface

𝑧(𝑥, 𝑦) = 𝑎 0 + 𝑏1𝑥 + 𝑏2𝑥2  + 𝑐1𝑦 + 𝑐2𝑦2

covers above the shaded polygonal area of Fig. 
5 can be calculated applying Formula (4.3) at each of 
the squares that form the polygonal area and adding 
above all of them.

The result is almost evident and can be written

𝑉 = [(4⁄3) 𝑆0  + (1⁄6)  𝑆1  + (1⁄3)  𝑆2  + 
(1⁄2)  𝑆3  + (2⁄3)  𝑆4] 𝑘  2⁄2

(5.1)

where:

𝑆0:  Sum o f the  d ime ns io ns  𝑧(𝑥, 𝑦) in the ce nte rs 
o f the  s quare s 
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𝑆1: Sum o f the  d ime ns io ns  𝑧(𝑥, 𝑦) in the co nve x
no d e s 

𝑆2: Sum o f the  d ime ns io ns  𝑧(𝑥, 𝑦) in the flat
no d e s 

𝑆3: Sum o f the  d ime ns io ns  𝑧(𝑥, 𝑦) in the 
co ncave  no d e s 

𝑆4:  Sum o f the  d ime ns io ns  𝑧(𝑥, 𝑦) in the inte rnal
no d e s 

It is interesting to note some numerical 
relationships that must meet the numbers of the 
addends of these sums. To express them, we can call 
them

𝑁0: Numbe r o f s quare s  (o r ce nte rs  o f s quare s ) 

𝑁1: Numbe r o f co nve x no d e s 

𝑁2: Numbe r o f flat no d e s 

𝑁3: Numbe r o f co ncave  no d e s 

𝑁4: Numbe r o f inte rnal no d e s 

The 𝑁0 s quare s  co ns id e re d  o ne  by o ne  have  4 ∙ 
𝑁0 ve rtice s  (o r no d e s ) ,  s o  that co unting e ach co nve x 
no d e  o ne  time ,  e ach flat no d e  two  time s ,  e ach 
co ncave  no d e  thre e  time s ,  and  e ach inte rnal no d e  
fo ur time s ,  we  s ho uld  have :

4 𝑁0   =  𝑁1   + 2𝑁2  + 3𝑁3  + 4𝑁4 (8.1)

and since it has already been noted that

𝑁1 =  𝑁3  + 4 (8.2)

it can be deduced that

2(𝑁0  − 𝑁4  − 𝑁3  − 1)  =   𝑁2

which indicates that the number of flat nodes 
should be even, and that

𝑁0 =  𝑁4  + 𝑁3 + 𝑁2⁄2 + 1 (8.3)

On the other hand, it was already seen that 
upon summing the coefficients of the dimensions of 
each square (Formula 4.3) we get the number 2, so 
by summing the 𝑁0 s quare s  we  s ho uld  ge t 2 ∙ 𝑁0 , and 
the sum of coefficients in Formula 7.1 will be

(4⁄3) 𝑁0 + (1⁄6) 𝑁1 +(1⁄3) 𝑁2+(2⁄3) 𝑁4 =  2𝑁0

where

(2⁄3) 𝑁0  + (1⁄6)  (𝑁3  + 4)  + (1⁄3) 𝑁2  + 
(1⁄3) 𝑁3  + (2⁄3)  𝑁4

Dividing this equation by 2 results again in 
Equation 8.3.

With this background, it is now possible 
to write a formula to calculate with adjustable 
approximation an integral of the form

�
𝑅 

𝑓(𝑥, 𝑦) 𝑑𝑥 ∙ 𝑑𝑦 

𝑅 being a simple connected region of the plane 
𝑂𝑋𝑌 and 𝑓(𝑥, 𝑦) be ing a bo und e d , co ntinuo us , and 
s ummable  functio n o n 𝑅 .

The procedure for valuing this integral is as 
follows:

a. Admit that 𝑓(𝑥, 𝑦) is  appro ximate by a
quad ric s urface  𝑧(𝑥, 𝑦) like (3.1) , in the e ntire 
re gio n 𝑅 , in the sense that for each point (𝑥, 𝑦) of 𝑅 
we  have  to 

|𝑓(𝑥, 𝑦) − 𝑧(𝑥, 𝑦) | < 𝜀

𝜀 be ing a pre s cribe d po s itive numbe r and 
as  clo s e  to  ze ro  (0)  as  ne e d e d  to  re fine  the  re s ults  
and  agre e  with the  s ize  o f the  grid  that imme d iate ly 
fo llo ws .

b. Draw a grid of caliber k that covers all of  
R, and such that the variation of 𝑓(𝑥, 𝑦) ins id e any
frame  ne ve r e xce e d s  𝜀.

c. Choose a closed polygon in the grid that 
does not move away at a greater distance than k 
in the contour of R, which is a simple, rectifiable, 
and closed Jordan curve, of length L. This polygon 
is called an approximate polygon, and the region it 
encloses is shown with Q. It is simple to demonstrate 
that if k tends to zero, the area of Q tends, as a limit, 
to the area of R, and the perimeter of Q tends to the 
perimeter of R.

d. Indicate the centers and the corners of all 
the squares that are enclosed by the aforementioned 
polygonal. Said corners are the nodes of the 
polygonal network.
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e. Classify the set of M nodes of the polygonal 
network in the four disjointed subsets:

𝑀1: s ubs e t o f co nve x no d e s 

𝑀2: s ubs e t o f flat no d e s 

𝑀3: s ubs e t o f co ncave  no d e s 

𝑀4: s ubs e t o f inte rnal no d e s  

Thus, we have the partition

𝑀 = 𝑀1 ∪ 𝑀2 ∪ 𝑀3 ∪ 𝑀4,   with  𝑀𝑖 ∩ 𝑀𝑗 =  ∅   fo r 
𝑖 ≠   𝑗

f. Calculate 𝑓(𝑥, 𝑦) in e ach o f the no d e s in s e t 
M, whose number is 𝑁1   + 𝑁2   + 𝑁3  + 𝑁4.

Alternatively, 𝑓(𝑥, 𝑦) can be  give n in a nume ric
table  o r d rawn as  a family o f co nto ur line s  o n plane  
𝑂𝑋𝑌.

g. Calculate numerically or algebraically (or 
read, or observe graphically, or measure physically 
on a scale model) the value of 𝑓(𝑥, 𝑦) o n e ach o f 
the  ce nte rs  o f the  𝑁0 s quare s  that are  e nclo s e d  by 
the  appro ximate  po lygo n. The s e  ce nte rs  fo rm the  
s ubs e t 𝑀0.

h. Form each of the five summations

𝑆𝑛  =  �
𝑃𝑖∈𝑀𝑛

𝑓(𝑃𝑖)  fo r  𝑛 = 0, 1, 2, 3, 4

and numerically calculate them.

i. Calculate Expression (7.1)

𝑉 = [4 ∙ 𝑆0⁄3 +𝑆1⁄6+𝑆2⁄3+𝑆3⁄2+2 ∙ 𝑆4⁄3]  𝑘 2⁄2

which would give the volume covered by a 
continuous surface that in each square of the grid 
coincides with the quadric above the area embraced 
by the polygon. In the first approximation, it is 
possible to take this value as an estimate of the 
proposed integral (2.1), but taking into account that 
we are admitting errors of approximation by two 
concepts:

i.  By approximating region R with the polygon 
Q, and

ii.  By approximating the function 𝑓(𝑃) by the 
“patche s ” o f quad rics  𝑧(𝑃) that co incid e with 

𝑓(𝑃) in the nodes of the grid, but no necessarily 
on the rest of the points in region R.

10.  In order to assess the magnitude of the 
error of approximation, first observe that region R 
is the union of Q with 𝑅 ∩ Q�  excluding the points of 
Q that are not R from the last set of points, that is:

𝑅 = 𝑄 ∪ (𝑅 ∩ Q�  ⁄(𝑄 ∩ Q�  ) 

where the slash (/) is the difference sign 
between sets, and the slash above a set indicates its 
complement. So

�
𝑅 

𝑓(𝑃) 𝑑𝑃  
�
𝑄

𝑓(𝑃) ∙ 𝑑𝑃

�
𝑅 /𝑄

𝑓(𝑃) 𝑑𝑃  
�

𝑄/𝑅 
𝑓(𝑃) 𝑑𝑃 

(10.1) 

The first integral on the right side of this 
equation is

�
𝑄

𝑓(𝑃) ∙ 𝑑𝑃 + �
𝑄

𝑧(𝑃) ∙ 𝑑𝑃 +

�
𝑄

[𝑓(𝑃) − 𝑧(𝑃) ] 𝑑𝑃=  𝑉 + � (𝑓 − 𝑧) ∙ 𝑑𝑃

(10.2) 

The third term of the right-hand side of 
Equation 10.1 which is

�
𝑄/𝑅 

𝑓(𝑃) ∙ 𝑑𝑃 

may not be defined by the problem to be solved, 
or may be null, since the domain where the volume 
V is sought is R. And by previous consideration, it 
follows that

lim
𝑘 →0

�
𝑅 

 𝑑𝑥 ∙ 𝑑𝑦=  �
𝑄

𝑑𝑥 ∙ 𝑑𝑦⇒ lim �
𝑄/𝑅 

 𝑓(𝑃) ∙ 𝑑𝑃= 0

Substituting (10.2) for (10.1) we thus have

�
𝑅 

 𝑓 ∙ 𝑑𝑃 − 𝑉 =  �

𝑄∩𝑅 

(𝑓 − 𝑧) ∙ 𝑑𝑃 + �
𝑅 /𝑄

 𝑓(𝑃) ∙ 𝑑𝑃

From here we get the volume calculation error

𝜀= �  𝑓(𝑃) ∙ 𝑑𝑃−𝑉 ≤
�

𝑄∩𝑅 
(𝑓−𝑧) 𝑑𝑃 +

�
𝑅 /𝑄

 𝑓∙ 𝑑𝑃
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≤   
�

𝑄∩𝑅 
 |𝑓 − 𝑧| 𝑑𝑃 +

�
𝑅 /𝑄

|𝑓| 𝑑𝑃

≤ max
𝑄∩𝑅 

|𝑓−𝑧| ∙ are a (𝑄∩𝑅 ) + max
𝑅 
−𝑄

 |𝑓| ∙ are a o f (𝑅 ⁄𝑄) 

But:

area of 𝑄 ∩ 𝑅 ≤ are a o f 𝑅  =  𝑆

are a o f 𝑅 ⁄𝑄 ≤ pe rime te r o f the bo rd e r o f 𝑅  × 
𝑘 = 𝐿 ∙ 𝑘 

and calling

𝑚 = max
𝑄∩𝑅 

 |𝑓 − 𝑧| ≤ max
𝑅 

|𝑓 − 𝑧| =  𝑚 ∗

 𝑀 = max
𝑅 /𝑄

|𝑓| ≤ max
𝑅 

 |𝑓| =  𝑀∗

We deduce a dimensioning for the error 𝜀

𝜀 = 𝑚 ∙ 𝑆 + 𝑀𝐿 𝑘 ≤ 𝑚 ∗ ∙ 𝑆 + 𝑀∗ ∙ 𝐿 ∙ 𝑘 (10.3)

This dimensioning allows us to numerically 
estimate a maximum limit of the error module of 
the approximation. In effect, 𝑆 and 𝐿 are kno wn d ata
fro m the  re gio n 𝑅 ; 𝑘 has be e n cho s e n at will; m and 
M were obtained by inspection or another known 
method of carrying functions to the extreme value.

11.   It would now be desirable to be able to 
prove that the error is infinitesimal with k. In the 
inequalities (10.3) the factors M, L, k and M* are 
evidently infinitesimal with k. For this consideration, 
it would be necessary and sufficient to show that m 
(or m*) tends to zero if 𝑘 → 0. But this issue of error 
in the polynomial function setting will be dealt with 
in another document.

12.   In summary, we can state the following 
formula of approximate numerical integration in 
two variables and referring to Figure 5:

�
𝑅 

4 1
𝑓(𝑥, 𝑦) 𝑑𝑥 ∙ 𝑑𝑦 = —𝑆0 + —𝑆1 +3 6

1 1 2
— 𝑆2 + — 𝑆3 + — 𝑆4 𝑘 2⁄2+𝜀
3 2 2

(12.1)

where 𝑆0,  𝑆1,  𝑆2,  𝑆3,  𝑆4 have  the  me aning 
e xplaine d  in numbe r 7 (Fo rmula 7.1) ,  and 

|𝜀| ≤ 𝑚 𝑆 + 𝑀 ∙ 𝐿  ∙ 𝑘 

whose symbols were already defined in the 
previous number.

Formula (12.1) might well be called “Simpson’s 
formula on the plane”.

13.  Among the numerous applications that can 
be done through this formula it is worth mentioning 
the following:

 - The measurement of the volume of a 
reservoir or lake by means of probes done along 
points of the surface that form a well-oriented, well-
calibrated, and well-abscised grid

 - The volumetry of a coal mantle by drilling 
holes from the surface and using the grid technique 
already described

 - The measurement of volume for a gravel 
hill, above the different reference dimensions
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