Caracterización cinemática, electromiográfica y estabilométrica del pedaleo en bicicleta de ruta. Reporte de caso
Kinematic, stabilometric and electromyographic characterization of road bike pedaling. Case report
Contenido principal del artículo
Resumen
Objetivo: Determinar las características cinemáticas, electromiográficas y estabilométricas del pedaleo en bicicleta de ruta. Metodología: se realiza un estudio tipo reporte de caso, realizado con 2 ciclistas (profesional y amateur) a quienes se les realizan pruebas de cinemática, electromiografía (EMG) de superficie y estabilometría, haciendo uso de la tecnología Bioengineering (BTS). Resultados: la potencia tiene una tendencia lineal siendo mayor en el ciclista profesional en comparación con el amateur, por otra parte, la velocidad tiene un comportamiento lineal siendo mayor la del ciclista profesional. En el análisis cinemático hay mayor consistencia en los movimientos realizados por el ciclista profesional que el amateur, las diferencias son más evidentes en tronco y tobillo, las cuales son las articulaciones extremas-proximal y distal de la cadena cinética. La actividad muscular mostró patrones más estables y amplitudes con mayor tamaño en el ciclista profesional, de acuerdo con la estabilidad, el índice de Romberg en ambos ciclistas es normal con un valor de 0,879 para el profesional y 0,704 para el amateur. Conclusión: Los mejores resultados obtenidos por el ciclista profesional en relación con las variables estudiadas pueden estar asociados con el tiempo de entrenamiento y la realización del gesto deportivo con una técnica más depurada.
Descargas
Detalles del artículo
Referencias (VER)
Bailey, M. P., Maillardet, F. J., & Messenger, N. (2003). Kinematics of cycling in relation to anterior knee pain and patellar tendinitis. Journal of Sports Sciences, 21(8), 649–657. https://doi.org/10.1080/0264041031000102015
Baydal-Bertomeu, J. M., Barberà I Guillem, R., Soler-Gracia, C., Peydro De Moya, M. F., Prat, J. M., & Barona De Guzmán, R. (2004). Determinación de los patrones de comportamiento postural en población sana Española. Acta Otorrinolaringologica Espanola, 55(6), 260–269. https://doi.org/10.1016/S0001-6519(04)78520-9
Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of Bicycle Saddle Height on Knee Injury Risk and Cycling Performance. Sports Medicine, 41(6), 463–476. https://doi.org/10.2165/11588740-000000000-00000
Bini, Rodrigo R., Dagnese, F., Rocha, E., Silveira, M. C., Carpes, F. P., & Mota, C. B. (2016). Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling. European Journal of Sport Science, 16(5), 553–559. https://doi.org/10.1080/17461391.2015.1135984
Bini, Rodrigo R, Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301–314. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20811079
Bini, Rodrigo Rico, Diefenthaeler, F., & Mota, C. B. (2010). Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 20(1), 102–107. https://doi.org/10.1016/j.jelekin.2008.10.003
Bini, Rodrigo Rico, Hume, P. A., & Croft, J. (2014). Cyclists and triathletes have different body positions on the bicycle. European Journal of Sport Science, 14(sup1), S109–S115. https://doi.org/10.1080/17461391.2011.654269
Bini, Rodrigo Rico, Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44–52. https://doi.org/10.1080/17461391.2012.725105
Bini, Rodrigo Rico, Senger, D., Lanferdini, F., & Lopes, A. L. (2012). Joint kinematics assessment during cycling incremental test to exhaustion. Isokinetics and Exercise Science, 20(1), 99–105. https://doi.org/doi:10.3233/IES-2012-0447
Bressel, E., Yonker, J. C., Kras, J., & Heath, E. M. (2007). Comparison of static and synamic balance in female. Journal of Athletic Training, 42(1), 42–46. https://doi.org/10.12968/hmed.2007.68.6.23571
Carpes, F., Dagnese, F., Bini, R., Diefenthaeler, F., Rossato, M., Mota, C., & Guimarães, A. (2006). Pedaling kinematics characteristics of competitive cyclists of different disciplines. J Sports Sci, 6(1), 7–14.
Castellote Olivito, J. M. (n.d.). Biomecánica de la extremidad inferior en el ciclista. Archivos de Medicina Del Deporte, 3(11), 233–238.
Chapman, A. R., Vicenzino, B., Blanch, P., & Hodges, P. W. (2007). Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads. Experimental Brain Research, 181(3), 503–518. https://doi.org/10.1007/s00221-007-0949-5
Chapman, A., Vicenzino, B., Blanch, P., & Hodges, P. (2009). Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment? Journal of Science and Medicine in Sport, 12(1), 31–34. https://doi.org/10.1016/j.jsams.2007.08.012
Charpentier, A. O. (2015). La lucha ha de ser a muerte (y por puro prestigio). Reflexiones sobre la competencia deportiva femenina. Revista de Investigación y Divulgación Sobre Los Estudios de Género, 22(17), 75–101. Retrieved from http://revistasacademicas.ucol.mx/index.php/generos/article/view/716/pdf
Clark, R. A., Bryant, A. L., Pua, Y., McCrory, P., Bennell, K., & Hunt, M. (2010). Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait & Posture, 31(3), 307–310. https://doi.org/10.1016/j.gaitpost.2009.11.012
da Silva, J. C. L., Ekblom, M. M., Tarassova, O., Andersson, E., Rönquist, G., Grundström, H., & Arndt, A. (2018). Effect of increasing workload on knee extensor and flexor muscular activity during cycling as measured with intramuscular electromyography. PLOS ONE, 13(8), e0201014. https://doi.org/10.1371/journal.pone.0201014
De Asha, A. R., & Buckley, J. G. (2015). The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees. Clinical Biomechanics, 30(4), 343–346. https://doi.org/10.1016/j.clinbiomech.2015.03.001
De Marchis, C., Schmid, M., Bibbo, D., Bernabucci, I., & Conforto, S. (2013). Inter-individual variability of forces and modular muscle coordination in cycling: A study on untrained subjects. Human Movement Science, 32(6), 1480–1494. https://doi.org/10.1016/J.HUMOV.2013.07.018
de Waard, D. (2017). Cycling futures. Transport Reviews, 37(3), 403–405. https://doi.org/10.1080/01441647.2017.1281850
Faúndez, C. A. (2007). Intereses económicos y sociales que rodean el ciclismo de competencia. RE - Presentaciones: Periodismo, Comunicacíon y Sociedad, 3, 167–183.
Haro, M. (2014). Laboratorio de análisis de marcha y movimiento. Revista Médica Clínica Las Condes, 25(2), 237–247. https://doi.org/10.1016/S0716-8640(14)70034-3
Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing, 35 Suppl 2, ii7–ii11. https://doi.org/10.1093/ageing/afl077
Hrysomallis, C. (2011). Balance ability and athletic performance. Sports Medicine. https://doi.org/10.2165/11538560-000000000-00000
Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 19(2), 182–198. https://doi.org/10.1016/J.JELEKIN.2007.10.010
Hug, F., Turpin, N. A., Guével, A., & Dorel, S. (2010). Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? Journal of Applied Physiology, 108(6), 1727–1736. https://doi.org/10.1152/japplphysiol.01305.2009
Karlsson, A., & Lanshammar, H. (1997). Analysis of postural sway strategies using an inverted pendulum model and force plate data. Gait and Posture, 5(3), 198–203. https://doi.org/10.1016/S0966-6362(96)01082-X
Kioumourtzoglou, E., Derri, V., Mertzanidou, O., & Tzetzis, G. (1997). Experience with perceptual and motor skills in rhythmic gymnastics. Perceptual and Motor Skills, 84(3 Pt 2), 1363–1372. https://doi.org/10.2466/pms.1997.84.3c.1363
Lucía, A., Joyos, H., & Chicharro, J. L. (2000). Physiological Response to Professional Road Cycling: Climbers vs. Time Trialists. International Journal of Sports Medicine, 21(7), 505-512. doi:10.1055/s-2000-7420
Melzer, I., Benjuya, N., Kaplanski, J., & Alexander, N. (2009). Association between ankle muscle strength and limit of stability in older adults. Age and Ageing. https://doi.org/10.1093/ageing/afn249
Meyer, D., Dungs, C., & Senner, V. (2015). Estimating the relationship between heart rate and power output for short term cycling exercises. In Procedia Engineering (Vol. 112, pp. 237–243). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2015.07.206
Nederhand, M. J., Van Asseldonk, E. H. F., der Kooij, H. van, & Rietman, H. S. (2012). Dynamic Balance Control (DBC) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side. Clinical Biomechanics, 27(1), 40–45. https://doi.org/10.1016/j.clinbiomech.2011.07.008
Ortiz, F., Argothy, R., Castelblanco, A., Florez, P., & Rodriguez, M. (2016). capitulo 14. Evaluacion del equilibrio y de la marcha. In el manual moderno (Ed.), texto de medicina fisica y rehabilitacion (pp. 182–199). bogota, D.C.
Paillard, T., & Noé, F. (2006). Effect of expertise and visual contribution on postural control in soccer.
Scandinavian Journal of Medicine & Science in Sports, 16(5), 345–348. https://doi.org/10.1111/j.1600-0838.2005.00502.x
Perez-Landaluce J., Fernández-García B., Rodríguez-Alonso M., García-Herrero F., García-Zapico P., Patterson A.M. & Terrados N. (2002). Physiological differences and rating of perceived exertion (RPE) in professional, amateur and young cyclists. J Sport Med Phys Fitness, 42, 389-395.
Peterka, R. J. (2002). Sensorimotor integration in human postural control. J Neurophysiol, 88, 1097–1118. https://doi.org/10.1152/jn.00605.2001
Peveler, W. W., Pounders, J. D., & Bishop, P. A. (2007). Effects of Saddle Height on Anaerobic Power Production in Cycling. The Journal of Strength and Conditioning Research, 21(4), 1023. https://doi.org/10.1519/R-20316.1
Rassier, D. E., MacIntosh, B. R., & Herzog, W. (1999). Length dependence of active force production in skeletal muscle. Journal of Applied Physiology, 86(5), 1445–1457. https://doi.org/10.1152/jappl.1999.86.5.1445
Rose, D. (2005). Fall proof! A comprehensive balance and movility training program. (H. Kineics, Ed.) (1st ed.). Barcelona.
Saito, A., Watanabe, K., & Akima, H. (2015). Coordination among thigh muscles including the vastus intermedius and adductor magnus at different cycling intensities. Human Movement Science, 40, 14–23. https://doi.org/10.1016/J.HUMOV.2014.11.010
Sanderson, D. J., Martin, P. E., Honeyman, G., & Keefer, J. (2006). Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 16(6), 642–649. https://doi.org/10.1016/j.jelekin.2005.11.003
Schwellnus, M., & Derman, E. (2005). Common injuries in cycling: Prevention, diagnosis and management. South African Family Practice, 47(7), 14–19. https://doi.org/10.1080/20786204.2005.10873255
Takaishi, T., Yamamoto, T., Ono, T., Ito, T., & Moritani, T. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Medicine and Science in Sports and Exercise, 30(3), 442–449. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9526892
Tamborindeguy, A. C., & Rico Bini, R. (2011). Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of Bodywork and Movement Therapies, 15(2), 186–191. https://doi.org/10.1016/j.jbmt.2009.07.009
Tiwari, P. S., Gite, L. P., Pandey, M. M., & Shrivastava, A. K. (2011). Pedal power for occupational activities: Effect of power output and pedalling rate on physiological responses. International Journal of Industrial Ergonomics, 41(3), 261–267. https://doi.org/10.1016/j.ergon.2011.02.011
Uimonen, S., Laitakari, K., Sorri, M., Bloigu, R., & Palva, A. (1992). Effect of positioning of the feet in posturography. Journal of Vestibular Research : Equilibrium & Orientation, 2(4), 349–356. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1342407
Winter, D A, Patla, A. E., & Frank, J. S. (1990). Assessment of balance control in humans. Medical Progress through Technology, 16(1–2), 31–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2138696
Winter, DA A. (1995). Human balance and posture control during standing and walking. Gait and Posture. https://doi.org/10.1016/0966-6362(96)82849-9
Yoshimoto, Uchihara, H., Nomura, Y., & Yasuda, N. (2015). Associations between functional threshold power, autonomic activation and immune function in aerobically trained cyclists. Journal of Science and Medicine in Sport, 19, e67. https://doi.org/10.1016/j.jsams.2015.12.164
Zemková, E. (2014). Sport-specific balance. Sports Medicine. Springer International publishing. https://doi.org/10.1007/s40279-013-0130-1