Evaluación de Riesgo ambiental de Clorpirifos y TCP en Ecosistemas Acuáticos
Environmental Risk assessment of Chlorpyrifos and TCP in Aquatic Ecosystems
Contenido principal del artículo
Resumen
El clorpirifos es un plaguicida de uso común que pertenece al grupo de compuestos organofosforados (OPP). El clorpirifos se usa ampliamente en entornos residenciales y agrícolas para el control de plagas de insectos. Como muchos de los OPP, El clorpirifos se degrada rápidamente a compuestos más complejos y tóxicos en condiciones naturales, por lo que se desconocen los diversos efectos de estos compuestos sobre las especies acuáticas. Debido al riesgo de que los plaguicidas como el Clorpirifos, que se descompone principalmente en 3,5,6-tricloro-2-piridinol (TCP) en los ecosistemas, existe una necesidad de intensificar y ampliar los datos de monitoreo ambiental y la evaluación de riesgo ecotoxicológico para ambas sustancias. La evaluación de riesgos proporciona un enfoque sistemático para caracterizar la naturaleza y la magnitud de los riesgos asociados con los peligros para la salud ambiental. Sin embargo, en países como Colombia, donde el uso del Clorpirifos está muy extendido, el número de investigaciones sobre la dinámica y el riesgo que implica la presencia de esta clase de sustancias en cuerpos de agua es limitado.
Descargas
Detalles del artículo
Referencias (VER)
Abhilash, P. C. and Singh, N. (2009) ‘Pesticide use and application: An Indian scenario’, Journal of Hazardous Materials, 165(1–3), pp. 1–12. doi: 10.1016/j.jhazmat.2008.10.061.
Affum, A. O. et al. (2018) ‘Distribution and risk assessment of banned and other current-use pesticides in surface and groundwaters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana’, Science of the Total Environment. Elsevier B.V., 633, pp. 630–640. doi: 10.1016/j.scitotenv.2018.03.129.
Agudelo C, R. M., Jaramillo, M. L. and Peñuela, G. (2012) ‘Comparison of the removal of chlorpyrifos and dissolved organic carbon in horizontal sub-surface and surface flow wetlands’, Science of the Total Environment. Elsevier B.V., 431, pp. 271–277. doi: 10.1016/j.scitotenv.2012.05.045.
Aisha, A. A. et al. (2017) ‘Monitoring of 45 pesticides in Lebanese surface water using polar organic chemical integrative sampler (POCIS)’, Ocean Science Journal, pp. 1–12. doi: 10.1007/s12601-017-0041-4.
Andres, V. et al. (2018) ‘Contaminated land in Colombia : A critical review of current status and future approach for the management of contaminated sites’, Science of the Total Environment. Elsevier B.V., 618, pp. 199–209. doi: 10.1016/j.scitotenv.2017.10.245.
Bedoya-Ríos, D. F. et al. (2018) ‘Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia’, Journal of Environmental Science and Health, Part A. Taylor & Francis, 53(4), pp. 317–325. doi: 10.1080/10934529.2017.1401372.
Beeck, L. Op De, Verheyen, J. and Stoks, R. (2018) ‘Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy’, Environmental Pollution. Elsevier Ltd, 233, pp. 226–234. doi: 10.1016/j.envpol.2017.10.071.
Benfenati, E. et al. (2017) ‘QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database’, Environmental Toxicology and Pharmacology, 53(May), pp. 158–163. doi: 10.1016/j.etap.2017.05.011.
Burgues, M. et al. (2012) ‘Análisis preliminar de contaminación en aguas superficiales provenientes de fertilizantes y pesticidas utilizados en las actuales prácticas agrícolas’, in 1Er Encuentro De Investigadores En Formación En Recursos Hídricos. Buenos Aires, Argentina. Available at: http://www.ina.gov.ar/pdf/ifrrhh/02_003_Burgues.pdf.
Carazo-Rojas, E. et al. (2018) ‘Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem’, Environmental Pollution, 241, pp. 800–809. doi: 10.1016/j.envpol.2018.06.020.
Carro, A. M. et al. (2012) ‘Dispersive liquid-liquid microextraction coupled with programmed temperature vaporization-large volume injection-gas chromatography-tandem mass spectrometry for multiclass pesticides in water’, Journal of Chromatography A. Elsevier B.V., 1253, pp. 134–143. doi: 10.1016/j.chroma.2012.06.089.
Chawla, P. et al. (2018) ‘Organophosphorus pesticides residues in food and their colorimetric detection’, Environmental Nanotechnology, Monitoring and Management. Elsevier, 10(July), pp. 292–307. doi: 10.1016/j.enmm.2018.07.013.
Chen, Y. et al. (2018) ‘Occurrence, distribution and risk assessment of pesticides in a river-reservoir system’, Ecotoxicology and Environmental Safety. Elsevier Inc., 166(July), pp. 320–327. doi: 10.1016/j.ecoenv.2018.09.107.
Cheng, Y. et al. (2007) ‘Variation of Coenzyme F420 Activity and Methane Yield in Landfill Simulation of Organic Waste’, Journal of China University of Mining and Technology, 17(3), pp. 403–408. doi: 10.1016/S1006-1266(07)60114-X.
Dahiya, V. et al. (2017) ‘Solvent-dependent binding interactions of the organophosphate pesticide, chlorpyrifos (CPF), and its metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), with Bovine Serum Albumin (BSA): A comparative fluorescence quenching analysis’, Pesticide Biochemistry and Physiology. Elsevier Inc., 139, pp. 92–100. doi: 10.1016/j.pestbp.2017.04.011.
Delnat, V. et al. (2019) ‘Daily temperature variation magnifies the toxicity of a mixture consisting of a chemical pesticide and a biopesticide in a vector mosquito’, Science of the Total Environment. Elsevier B.V., 659, pp. 33–40. doi: 10.1016/j.scitotenv.2018.12.332.
Department of Health and Ageing of Australia (2004) ‘ENVIRONMENTAL HEALTH RISK ASSEEEMENT, Guidelines for assessing human health risks from environmental hazards’. Camberra, Australia, p. 258. Available at: http://enhealth.nphp.gov.au/council/pubs/pubs.htm.
Gebremariam, S. Y. et al. (2012) ‘Adsorption and Desorption of Chlorpyrifos to Soils and Sediments’, Reviews of Environmental Contamination and Toxicology, Volume, 215, pp. 123–155. doi: 10.1007/978-1-4614-1463-6.
Giddings, J. M. et al. (2014) ‘Risks to Aquatic Organisms from Use of Chlorpyrifos in the United States’, Reviews of Environmental Contamination and Toxicology. Edited by P. J. Giesy and R. K. Solomon. Cham: Springer International Publishing, (231), pp. 119–162. doi: 10.1007/978-3-319-03865-0_5.
Giesy, J. P. et al. (2014) ‘Ecological risk assessment of the uses of the organophosphorus insecticide chlorpyrifos, in the United States’, Reviews of Environmental Contamination and Toxicology. Saskatoon, Canada, pp. 1–11. doi: 10.1007/978-3-319-03865-0_1.
Guillén, D. et al. (2012) ‘Prioritization of chemicals in the aquatic environment based on risk assessment: Analytical, modeling and regulatory perspective’, Science of the Total Environment. Elsevier B.V., 440, pp. 236–252. doi: 10.1016/j.scitotenv.2012.06.064.
Guo, G. et al. (2013) ‘Ecological Risk Assessment of Organochlorine Pesticides in Surface Waters of Lake Taihu, China’, Human and Ecological Risk Assessment, 19(4), pp. 840–856. doi: 10.1080/10807039.2012.691811.
Hamadache, M. et al. (2014) ‘Prediction of Acute Herbicide Toxicity in Rats from Quantitative Structure–Activity Relationship Modeling’, Environmental Engineering Science, 31(5), pp. 243–252. doi: 10.1089/ees.2013.0466.
Hemond, H. F. and Fechner-Levy, E. (2015) CHEMICAL FATE AND TRANSPORT IN THE ENVIRONMENT. third edit. Elsevier.
Hillwalker, W. E. et al. (2010) ‘Exploiting lipid-free tubing passive samplers and embryonic zebrafish to link site specific contaminant mixtures to biological responses’, Chemosphere. Elsevier Ltd, 79(1), pp. 1–7. doi: 10.1016/j.chemosphere.2010.02.001.
Houbraken, M. et al. (2017) ‘Science of the Total Environment Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda’, Science of the Total Environment. Elsevier B.V., 576, pp. 888–894. doi: 10.1016/j.scitotenv.2016.10.127.
Huang, H., Tornero-Velez, R. and Barzyk, T. M. (2017) ‘Multi-class chemical exposure in rural Peru using silicone wristbands’, Journal of Exposure Science and Environmental Epidemiology, 27(6), pp. 544–550. doi: 10.1038/jes.2017.15.
Instituto Colombiano Agropecuario, I. (2018) Empresas Titulares de Registris de Plaguicidas-abril 2018. Available at: https://www.ica.gov.co/Areas/Agricola/Servicios/Regulacion-y-Control-de-Plaguicidas-Quimicos/Listados/2009/EMPRESAS-PLAGUICIDAS-PQUA-15-04-09.aspx.
Instituto Colombiano Agropecuario ICA (2017) ESTADÍSTICAS DE COMERCIALIZACIÓN DE PLAGUICIDAS QUÍMICOS DE USO AGRÍCOLA 2016. Bogotá, Colombia. Available at: https://www.ica.gov.co/Areas/Agricola/Servicios/Regulacion-y-Control-de-Plaguicidas-Quimicos/Estadisticas/Cartilla-Plaguicidas-2016_22-01-18.aspx.
Jain, R. B. (2017) ‘Association between thyroid function and urinary levels of 3,5,6-trichloro-2-pyridinol: data from NHANES 2007–2008’, Environmental Science and Pollution Research. Environmental Science and Pollution Research, 24(3), pp. 2820–2826. doi: 10.1007/s11356-016-8007-0.
Janssens, L., Op De Beeck, L. and Stoks, R. (2017) ‘Stoichiometric Responses to an Agricultural Pesticide Are Modified by Predator Cues’, Environmental Science and Technology, 51(1), pp. 581–588. doi: 10.1021/acs.est.6b03381.
Khan, K., Roy, K. and Benfenati, E. (2019) ‘Ecotoxicological QSAR modeling of endocrine disruptor chemicals’, 369(February), pp. 707–718.
Kuzmanović, M. et al. (2015) ‘Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian rivers’, Science of the Total Environment, 503–504, pp. 289–299. doi: 10.1016/j.scitotenv.2014.06.056.
Lei, W., Huo, X. and Zhou, X. (2017) ‘Adsorption Characteristics and Its Parameters Estimation of 3,5,6-trichloro-2-pyridinol in Purple Soil’, Transactions of the Chinese Society for Agricultural Machinery, 48(5), pp. 267–274. doi: 10.6041 / j.issn.1000-1298.2017.05.033.
Li, Z. (2018) ‘Introducing relative potency quotient approach associated with probabilistic cumulative risk assessment to derive soil standards for pesticide mixtures’, Environmental Pollution. Elsevier Ltd, 242, pp. 198–208. doi: 10.1016/j.envpol.2018.06.076.
Mauriz, E. et al. (2007) ‘On-line determination of 3,5,6-trichloro-2-pyridinol in human urine samples by surface plasmon resonance immunosensing’, Analytical and Bioanalytical Chemistry, 387(8), pp. 2757–2765. doi: 10.1007/s00216-007-1175-5.
Maya, K. et al. (2011) ‘Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP’, Process Biochemistry, 46(11), pp. 2130–2136. doi: 10.1016/j.procbio.2011.08.012.
Moncaleano-Niño, A. M. et al. (2018) ‘Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper’, Ecotoxicology and Environmental Safety. Elsevier Inc., 151(January), pp. 242–254. doi: 10.1016/j.ecoenv.2017.12.057.
Moore, D. R. J. (2001) ‘The Anna Karenina Principle Applied to Ecological Risk Assessments of Multiple Stressors’, Human and Ecological Risk Assessment: An International Journal, 7(2), pp. 231–237. doi: 10.1080/20018091094349.
Morselli, M. et al. (2018) ‘Pesticide fate in cultivated mountain basins: The improved DynAPlus model for predicting peak exposure and directing sustainable monitoring campaigns to protect aquatic ecosystems’, Chemosphere. Elsevier Ltd, 210, pp. 204–214. doi: 10.1016/j.chemosphere.2018.06.181.
Moussavi, G. et al. (2014) ‘Comparing the efficacy of UVC, UVC/ZnO and VUV processes for oxidation of organophosphate pesticides in water’, Journal of Photochemistry and Photobiology A: Chemistry, 290, pp. 86–93. doi: 10.1016/j.jphotochem.2014.06.010.
Narvaez, J. F. (2015) DINÁMICA Y EVALUACIÓN PRELIMINAR DE RIESGO AMBIENTAL DE PLAGUICIDAS Y PRODUCTOS DE DEGRADACIÓN EN LOS EMBALSES LA FE Y RIOGRANDE II – COLOMBIA, POR MEDIO DE MUESTREADORES PASIVOS. Universidad de Antioquia.
Narvaez V, J. F. et al. (2014) ‘DEGRADACIÓN HIDROLÍTICA DE CLORPIRIFOS Y EVALUACIÓN DE LA TOXICIDAD DEL EXTRACTO HIDROLIZADO CON Daphnia pulex’, Revista Politécnica. Medellín, Antioquia: Fondo Editorial POLI, pp. 9–15.
National Center for Biotechnology Information (2018) 3,5,6-Trichloro-2-pyridinol, PubChem Compound Database.
Pereira, A. S., Cerejeira, M. J. and Daam, M. A. (2017) ‘Toxicity of environmentally realistic concentrations of chlorpyrifos and terbuthylazine in indoor microcosms’, Chemosphere, 182, pp. 348–355. doi: 10.1016/j.chemosphere.2017.05.032.
Potter, T. L. and Coffin, A. W. (2017) ‘Assessing pesticide wet deposition risk within a small agricultural watershed in the Southeastern Coastal Plain (USA)’, Science of the Total Environment, 580, pp. 158–167. doi: 10.1016/j.scitotenv.2016.11.020.
Raimondo, S. et al. (2019) ‘A unified approach for protecting listed species and ecosystem services in isolated wetlands using community-level protection goals’, Science of the Total Environment. Elsevier B.V., 663, pp. 465–478. doi: 10.1016/j.scitotenv.2019.01.153.
Riches, J. (2014) Analysis of Organophosphorus Chemicals, Best Synthetic Methods: Organophosphorus (V) Chemistry. Elsevier Ltd. doi: 10.1016/B978-0-08-098212-0.00007-8.
Rico, A. et al. (2016) ‘Developing ecological scenarios for the prospective aquatic risk assessment of pesticides’, Integrated environmental assessment and management, 12(3), pp. 510–521. doi: 10.1002/ieam.1718.
Ríos-González, A. (2010) Uso de modelos predictivos y conceptuales para la evaluación ambiental y el análisis de la percepción de riesgo por uso de plaguicidas: Una opción para el manejo de riesgos en Chiapas. TESIS, Ecosur. El Colegio de la Frontera Sur.
Rivetti, C. et al. (2017) ‘Integrated environmental risk assessment of chemical pollution in a Mediterranean floodplain by combining chemical and biological methods’, Science of the Total Environment. Elsevier B.V., 583, pp. 248–256. doi: 10.1016/j.scitotenv.2017.01.061.
Sabatier, P. et al. (2014) ‘Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed’, Proceedings of the National Academy of Sciences, 111(44), pp. 15647–15652. doi: 10.1073/pnas.1411512111.
Simpson, A. M., Jeyasingh, P. D. and Belden, J. B. (2017) ‘Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes’, Aquatic Toxicology. Elsevier, 193(October), pp. 122–127. doi: 10.1016/j.aquatox.2017.10.012.
Singare, P. U. (2016) ‘Distribution and risk assessment of suspected endocrine-disrupting pesticides in creek water of Mumbai, India’, Marine Pollution Bulletin. Elsevier Ltd, 102(1), pp. 72–83. doi: 10.1016/j.marpolbul.2015.11.055.
Solomon, K. and Giesy, J. P. (2014) ‘Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States’, Reviews of Environmental Contamination and Toxicology, p. 282 pp. doi: 10.1007/978-3-319-03865-0.
Sumon, K. A. et al. (2018) ‘Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh’, Chemosphere. Elsevier Ltd, 206, pp. 92–100. doi: 10.1016/j.chemosphere.2018.04.167.
Testai, E., Buratti, F. M. and Di Consiglio, E. (2010) ‘Chlorpyrifos’, Hayes’ Handbook of Pesticide Toxicology, pp. 1505–1526. doi: 10.1016/B978-0-12-374367-1.00070-7.
Thibodeaux, L. and Mackay, D. (2011) Handbook of chemical mass transport in the environment. Edited by L. J. Thibodeaux and D. Mackay. Boca Raton, USA: CRC Press.
Toropova, A. P. et al. (2016) ‘Monte Carlo-based quantitative structure-activity relationship models for toxicity of organic chemicals to Daphnia magna’, Environmental Toxicology and Chemistry, 35(11), pp. 2691–2697. doi: 10.1002/etc.3466.
Tsaboula, A. et al. (2016) ‘Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate’, Environment International. Elsevier Ltd, 91, pp. 78–93. doi: 10.1016/j.envint.2016.02.008.
United States Environmental Protection Agency, U. S. E. (2018) ‘Ecological Estructure Activity Relationships (ECOSAR) Predictive Model’. Available at: https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model.
US EPA (1998) ‘Guidelines for Ecologycal Risk Assessment’. Washington, DC, p. 188. Available at: https://www.epa.gov/sites/production/files/2014-11/documents/eco_risk_assessment1998.pdf.
US EPA (2018a) Ecological Structure Activity Relationships (ECOSAR) Predictive Model. Available at: https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model.
US EPA (2018b) ‘Watershed Ecological Risk Assessment’, pp. 1–32. Available at: http://www.epa.gov/watertrain.
Wang, D., Singhasemanon, N. and Goh, K. S. (2016) ‘A statistical assessment of pesticide pollution in surface waters using environmental monitoring data: Chlorpyrifos in Central Valley, California’, Science of The Total Environment, 571, pp. 332–341. doi: 10.1016/j.scitotenv.2016.07.159.
Williams, W. M. et al. (2014) ‘Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States’, Reviews of Environmental Contamination and Toxicology, 231, pp. 77–117. doi: 10.1007/978-3-319-03865-0.
Wu, S. et al. (2017) ‘Gold nanoparticles dissolution based colorimetric method for highly sensitive detection of organophosphate pesticides’, Sensors and Actuators, B: Chemical. Elsevier B.V., 238, pp. 427–433. doi: 10.1016/j.snb.2016.07.067.
Xu, G. et al. (2008) ‘Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP’, International Biodeterioration and Biodegradation, 62(1), pp. 51–56. doi: 10.1016/j.ibiod.2007.12.001.
Yang, L. et al. (2005) ‘Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2- pyridinol degrading bacterium’, FEMS Microbiology Letters, 251(1), pp. 67–73. doi: 10.1016/j.femsle.2005.07.031.
Zhao, J. and Chen, B. (2016) ‘Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size.’, Ecotoxicology and environmental safety, 125, pp. 161–9. doi: 10.1016/j.ecoenv.2015.11.039.