Synthesis and characterization of Eu3Ba5Cu8O18-δ superconductor doped with 0.1% Graphene oxide
Síntesis y caracterización del superconductor Eu3Ba5Cu8O18-δ dopado con 0.1% de óxido de Grafeno
Contenido principal del artículo
Resumen
This research presents the synthesis and evaluation of the structural and morphological properties of superconducting Eu3Ba5Cu8O18-δ doped with 0.1% graphene oxide, using the solid state reaction method. The structural analysis performed on the samples, both doped and undoped, allowed identifying the main phase as Eu3Ba5Cu8O18-δ (Eu358), with orthorhombic structure and space group Pmm2(25), maintaining superconducting properties in both cases. In addition, it was observed that doping with graphene oxide resulted in the formation of a minority phase of EuBa4Cu3O9 (Eu143), with cubic structure and space group P23(195). As for the morphological characterization, it was evidenced that the undoped sample presents aggregates formed by non-uniform size grains, with an average size of approximately 97 µm. In contrast, the sample doped with 0.1% graphene oxide exhibits significant improvements in uniformity and grain boundaries, with an average size of about 141 µm. These results confirm obtaining Eu3Ba5Cu8O18-δ with a 73% superconducting phase, exceeding the percentages previously reported using the solid-state reaction method.
Descargas
Detalles del artículo
Referencias (VER)
Abdulrahman, M. W., & Hussain, F. I. (2019, July). Synthesis of Y3Ba5Cu8O18 superconductor by auto-combustion reaction. In AIP Conference Proceedings (Vol. 2123, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.5117012
Alviz Meza, A., Kafarov, V., & Y Peña Ballesteros, D. (2017, December). Study of the continuous corrosion in an oxidation environment derived from the theoretical combustion products in a refinery. Case study: ferritic steel ASTM A335 P91. In Journal of Physics Conference Series (Vol. 935, No. 1, p. 012057). DOI 10.1088/1742-6596/935/1/012057
Aliabadi, A., Farshchi, Y. A., & Akhavan, M. (2009). A new Y-based HTSC with Tc above 100 K. Physica C: Superconductivity and its applications, 469(22), 2012-2014.
DOI: https://doi.org/10.1016/j.physc.2009.09.003.
Delamare, M. P., Walter, H., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Characterization of natural and artificial low-angle boundaries in YBCO TSMG samples. Physica C: Superconductivity, 329(3), 160-177. DOI: https://doi.org/10.1016/S0921-4534(99)00454-2
Dadras, S., Dehghani, S., Davoudiniya, M., & Falahati, S. (2017). Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Materials Chemistry and Physics, 193, 496-500. DOI: https://doi.org/10.1016/j.matchemphys.2017.03.003
Debessai, M., Matsuoka, T., Hamlin, J. J., Bi, W., Meng, Y., Shimizu, K., & Schilling, J. S. (2010, March). Pressure-induced superconductivity in europium metal. In Journal of Physics: Conference Series (Vol. 215, No. 1, p. 012034). IOP Publishing. DOI 10.1088/1742-6596/215/1/012034
Dias, F. T., Oliveira, C. P. D., Vieira, V. D. N., Silva, D. L., Mesquita, F., Almeida, M. L. D., ... & Pureur, P. (2014, December). Magnetic irreversibility and zero resistance in granular Y358 superconductor. In Journal of Physics: Conference Series (Vol. 568, No. 2, p. 022009). IOP Publishing. DOI: 10.1088/1742-6596/568/2/022009
Falahati, S., Dadras, S., & Mosqueira, J. (2019). Investigation of the magnetic and transport properties of YBa 2 Cu 3 O 7-δ high temperature superconductor doped with graphene oxide. Journal of Superconductivity and Novel Magnetism, 32, 3755-3760. DOI: https://doi.org/10.1007/s10948-019-05171-z
Gadzhimagomedov, S. K., Palchaev, D. K., Gadzhiev, M. K., Murlieva, Z. K., Rabadanov, M. K., Saypulaev, P. M., ... & Rabadanova, A. E. (2021, May). Superconducting YBCO ceramics after exposure to a plasma flow to a mixture of argon and oxygen. In Journal of Physics: Conference Series (Vol. 1923, No. 1, p. 012007). IOP Publishing. DOI: 10.1088/1742-6596/1923/1/012007
Gaona, I. S., Supelano, G. I., & Vargas, C. P. (2020). Determination of critical superconducting parameters based on the study of the magnetization fluctuations for RE3Ba5Cu8O18-δ (RE= Sm, Eu, Gd, Dy and Ho) ceramic superconductor system. Ceramics International, 46(8), 11530-11538. DOI: https://doi.org/10.1016/j.ceramint.2020.01.179
Gholipour, S., Daadmehr, V., Rezakhani, A. T., Khosroabadi, H., Shahbaz Tehrani, F., & Hosseini Akbarnejad, R. (2012). Structural phase of Y358 superconductor comparison with Y123. Journal of superconductivity and novel magnetism, 25, 2253-2258. DOI:https://doi.org/10.1007/s10948-012-1611-4
Guerrero, U. F., Rivera, A. M., Cuaspud, J. A., Munevar, J., & Vargas, C. A. (2021). Synthesis of the La 3 Ba 5 Cu 8 O 18-δ and Sm 3 Ba 5 Cu 8 O 18-δ superconductors by the combustion and solid-state reaction methods. Materials Research, 24.
DOI: https://doi.org/10.1590/1980-5373-MR-2020-0366
Hor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., ... & Torng, C. J. (1987). High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Physical review letters, 58(9), 911. DOI: https://doi.org/10.1103/PhysRevLett.58.911.
JG, B. (1986). Possible highT_c super-conductivity in the Ba-La-Cu-O system. Z Physik B, 64, 189-193.DOI: https://doi.org/10.1007/BF01303701
Kamarudin, A. N., Awang Kechik, M. M., Abdullah, S. N., Baqiah, H., Chen, S. K., Abdul Karim, M. K., ... & Talib, Z. A. (2022). Effect of Graphene Nanoparticles Addition on Superconductivity of YBa2Cu3O7~ δ Synthesized via the Thermal Treatment Method. Coatings, 12(1), 91. DOI: https://doi.org/10.3390/coatings12010091
Kraus, W., & Nolze, G. (1996). POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of applied Crystallography, 29(3), 301-303. DOI:https://doi.org/10.1107/S0021889895014920
Kumar, N., Das, S., Bernhard, C., & Varma, G. D. (2013). Effect of graphene oxide doping on superconducting properties of bulk MgB2. Superconductor Science and Technology, 26(9), 095008. DOI: 10.1088/0953-2048/26/9/095008
Landínez Téllez, D. A., Cabrera Baez, M., & Roa-Rojas, J. (2012). Structure and conductivity fluctuations of the Y 3 Ba 5 Cu 8 O 18 superconductor. Modern Physics Letters B, 26(11), 1250067. DOI: https://doi.org/10.1142/S0217984912500674
Momma, K., & Izumi, F. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied crystallography, 41(3), 653-658. DOI:https://doi.org/10.1107/S0021889808012016
Parra Vargas, C. A., Canaría-Camargo, C. C., Roa-Rojas, J., & Albino-Aguiar, J. (2021). Análisis estructural del sistema superconductor RE3Ba5Cu8O18 (RE= Dy, Gd, Ho, Sm, Y, Yb).
DOI: https://doi.org/10.18257/raccefyn.1163
Parra-Borda, J. A., Rojas-Cruz, F. G., Cruz-Pacheco, A. F., Segura-Peña, S., & Vargas, C. P. (2017, December). Structural and magnetic analysis of the Pr1. 5Eu1. 5Ba5Cu8O18 system. In Journal of Physics: Conference Series (Vol. 935, No. 1, p. 012005). IOP Publishing. DOI: 10.1088/1742-6596/935/1/012005
Pavan Kumar Naik, S., Santosh, M., & Swarup Raju, P. M. (2018). Structural and thermal validations of Y 3 Ba 5 Cu 8 O 18 composites synthesized via citrate sol-gel spontaneous combustion method. Journal of Superconductivity and Novel Magnetism, 31, 1279-1286. DOI: https://doi.org/10.1007/s10948-017-4306-z.
Rekaby, M., Roumié, M., Abou-Aly, A. I., Awad, R., & Yousry, M. (2014). Magnetoresistance study of Y 3 Ba 5 Cu 8 O 18 superconducting phase substituted by Nd 3+ and Ca 2+ ions. Journal of Superconductivity and Novel Magnetism, 27, 2385-2395.DOI: https://doi.org/10.1007/s10948-014-2572-6
Sahoo, B., Singh, A. K., & Behera, D. (2020). Graphene oxide modified superconducting and elastic parameters of YBCO superconductor. Materials Chemistry and Physics, 240, 122252. DOI: https://doi.org/10.1016/j.matchemphys.2019.122252Get rights and content
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. DOIhttps://doi.org/10.1038/nmeth.2089
Shoushtari, M. Z., Heidarzadeh, G., & Ghahfarokhi, S. M. (2018). An Investigation of Y 3 Ba 5 Cu 8 O 18 Doping with Ag Nanoparticles and Its Application as Superconductor. Journal of Superconductivity and Novel Magnetism, 31, 3475-3483. DOI: https://doi.org/10.1007/s10948-018-4581-3
Slimani, Y., Hannachi, E., Azzouz, F. B., & Salem, M. B. (2018). Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics, 92, 5-12. DOI: https://doi.org/10.1016/j.cryogenics.2018.03.010
Sahoo, B., Karmakar, S., & Behera, D. (2019, October). Improvement of critical parameters of YBCO superconductor by addition of graphene oxide. In AIP Conference Proceedings (Vol. 2162, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.5130270
Suan, M. S. M., Johan, M. R., & Siang, T. C. (2012). Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: effects of citrate–nitrate ratio. Physica C: Superconductivity, 480, 75-78. DOI: https://doi.org/10.1016/j.physc.2012.05.006.
Supelano, G. I., Santos, A. S., & Vargas, C. P. (2014). Magnetic fluctuations on TR3Ba5Cu8Oδ (TR= Ho, Y and Yb) superconducting system. Physica B: Condensed Matter, 455, 79-81. DOI: https://doi.org/10.1016/j.physb.2014.07.050
Tavana, A., & Akhavan, M. (2010). How T c can go above 100 K in the YBCO family. The European Physical Journal B, 73, 79-83. DOI:https://doi.org/10.1140/epjb/e2009-00396-7
Toby, B. H. (2001). EXPGUI, a graphical user interface for GSAS. Journal of applied crystallography, 34(2), 210-213. . DOI: https://doi.org/10.1107/S0021889801002242
Topal, U., Akdogan, M., & Ozkan, H. (2011). Electrical and structural properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) superconductors. Journal of superconductivity and novel magnetism, 24, 2099-2102.DOI: https://doi.org/10.1007/s10948-011-1176-7
Topal, U., & Akdogan, M. (2012). The Role of Oxygenation on Superconducting Properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) Compounds. Journal of superconductivity and novel magnetism, 25, 239-244. DOI:https://doi.org/10.1007/s10948-011-1285-3
Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., & Ratreng, S. (2010). The new superconductors of YBaCuO materials. Journal of superconductivity and novel magnetism, 23, 1377-1380.. DOI: https://doi.org/10.1007/s10948-010-0786-9.
Walter, H., Delamare, M. P., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Melt-textured YBaCuO with high trapped fields up to 1.3 T at 77 K. Journal of Materials Research, 15(6), 1231-1234. DOI: https://doi.org/10.1557/JMR.2000.0175.
Wei, K., Ing, K., Hamdan, M. S., Radiman, S., & Abd-Shukor, R. (2018). AC Susceptibility and superconducting properties of graphene added YBa 2 Cu 3 O 7− d. Journal of Superconductivity and Novel Magnetism, 31, 2699-2703. DOI:https://doi.org/10.1007/s10948-017-4536-0.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924. DOI: https://doi.org/10.1002/adma.201001068