Crosslinked alginate-chitosan based scaffold functionalized with vegf-a for the beta-pancreatic cells support
Andamio reticulado a base de alginato-quitosano funcionalizado con VEGF-A para el soporte de las células betapancreáticas
Contenido principal del artículo
Resumen
La diabetes se ha convertido en una enfermedad pública mundial que afecta la calidad de vida de las personas y exige altos costos en los sistemas de salud. La diabetes aumenta los niveles de glucosa en sangre e induce el uso inadecuado de insulina; los tratamientos actuales no son muy eficaces para tratar esta enfermedad. En este estudio, se desarrolló un andamio poroso de alginato (Alg)/quitosano (Ch), reticulado con genipina (GEN), funcionalizado con factor de crecimiento endotelial (VEGF-A) mediante acoplamiento carbodiimida-Ch, para soportar las células beta-pancreáticas. Se utilizaron caracterizaciones como microscopía electrónica de barrido (SEM) y espectroscopia infrarroja por transformada de Fourier (FTIR) para identificar grupos funcionales y observar la morfología y porosidad de los andamios. Se realizaron pruebas de velocidad de degradación e hinchazón y luego se realizaron pruebas biológicas como viabilidad celular, citotoxicidad celular y ensayos de proliferación en todas las muestras. Los andamios obtenidos tenían una estructura similar a una esponja con poros interconectados con diámetros entre los rangos 25-280 μm, adecuados para el crecimiento de células beta pancreáticas y la formación de islotes. Estas matrices se degradan, son estables en el tiempo y permiten el cultivo celular manteniendo la viabilidad y proliferación de las células beta. Adicionalmente, genera una protección contra la muerte celular induciendo un ambiente apropiado para preservar la viabilidad e incluso por la acción del VEGF en combinación con GEN, induce la proliferación de células beta. Este enfoque permite el diseño de una matriz con propiedades biomiméticas para el cultivo de células productoras de insulina y representa un avance significativo en el campo de la medicina y las ciencias de la vida.
Descargas
Detalles del artículo
Referencias (VER)
Anjani, Q.K., Sabri, A.H. Bin, Moreno-Castellanos, N., Utomo, E., Cárcamo-Martínez, Á., Domínguez-Robles, J., Wardoyo, L.A.H., et al. (2022), “Soluplus®-based dissolving microarray patches loaded with colchicine: towards a minimally invasive treatment and management of gout”, Biomaterials Science, Biomater Sci, Vol. 10 No. 20, pp. 5838–5855, doi: 10.1039/D2BM01068B.
Antonova, L. V., Sevostyanova, V. V., Kutikhin, A.G., Mironov, A. V., Krivkina, E.O., Shabaev, A.R., Matveeva, V.G., et al. (2016), “Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Small-Diameter Vascular Grafts In vivo”, Frontiers in Pharmacology, Front Pharmacol, Vol. 7 No. JUL, doi: 10.3389/FPHAR.2016.00230.
Belén, L., Yalli, F., Pastor De Abram, A. and Fuentes Yalli, L. (2009), “PREPARACIÓN, CARACTERIZACIÓN Y EVALUACIÓN DE PELÍCULAS DE QUITOSANO PROVENIENTE DE CALAMAR GIGANTE " PARA USO MÉDICO PREPARATION, CHARACTERIZATION AND CHITOSAN FILMS EVALUATION FROM GIANT SQUID " ‘ FOR MEDICAL USE Dosidicus gigas’ Dosidicus gigas”, Rev Soc Quím Perú, Vol. 75 No. 1.
Bertram, R. and Pernarowski, M. (1998), “Glucose diffusion in pancreatic islets of Langerhans”, Biophysical Journal, Biophys J, Vol. 74 No. 4, pp. 1722–1731, doi: 10.1016/S0006-3495(98)77883-X.
Brawerman, G. and Thompson, P.J. (2020), “Beta Cell Therapies for Preventing Type 1 Diabetes: From Bench to Bedside”, Biomolecules, Biomolecules, Vol. 10 No. 12, pp. 1–20, doi: 10.3390/BIOM10121681.
Chakka, J.L., Acri, T., Laird, N.Z., Zhong, L., Shin, K., Elangovan, S. and Salem, A.K. (2021), “Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration”, RSC Advances, RSC Adv, Vol. 11 No. 22, pp. 13282–13291, doi: 10.1039/D1RA01193F.
Chua, S.T., Song, X. and Li, J. (2018), “Hydrogels for Stem Cell Encapsulation: Toward Cellular Therapy for Diabetes”, Springer Series in Biomaterials Science and Engineering, Springer, Berlin, Heidelberg, Vol. 12, pp. 113–127, doi: 10.1007/978-3-662-57511-6_5.
Dhamecha, D., Movsas, R., Sano, U. and Menon, J.U. (2019), “Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future”, International Journal of Pharmaceutics, Int J Pharm, Vol. 569, doi: 10.1016/J.IJPHARM.2019.118627.
Dimida, S., Barca, A., Cancelli, N., De Benedictis, V., Raucci, M.G. and Demitri, C. (2017), “Effects of genipin concentration on cross-linked chitosan scaffolds for bone tissue engineering: Structural characterization and evidence of biocompatibility features”, International Journal of Polymer Science, Hindawi Limited, Vol. 2017, doi: 10.1155/2017/8410750.
Echeverri-Cuartas, C.E., Gartner, C. and Lapitsky, Y. (2020), “PEGylation and folate conjugation effects on the stability of chitosan-tripolyphosphate nanoparticles”, International Journal of Biological Macromolecules, Int J Biol Macromol, Vol. 158, pp. 1055–1062, doi: 10.1016/J.IJBIOMAC.2020.04.118.
Gao, L., Gan, H., Meng, Z., Gu, R., Wu, Z., Zhang, L., Zhu, X., et al. (2014), “Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability”, Colloids and Surfaces. B, Biointerfaces, Colloids Surf B Biointerfaces, Vol. 117, pp. 398–405, doi: 10.1016/J.COLSURFB.2014.03.002.
Garnica-Palafox, I.M., Estrella-Monroy, H.O., Vázquez-Torres, N.A., Álvarez-Camacho, M., Castell-Rodríguez, A.E. and Sánchez-Arévalo, F.M. (2020), “Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrogels”, Carbohydrate Polymers, Elsevier, Vol. 236, p. 115971, doi: 10.1016/J.CARBPOL.2020.115971.
Hommel, J., Coltman, E. and Class, H. (2018), “Porosity–Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media”, Transport in Porous Media, Springer Netherlands, Vol. 124 No. 2, pp. 589–629, doi: 10.1007/S11242-018-1086-2/FIGURES/1.
Hsieh, W.C., Chang, C.P. and Lin, S.M. (2007), “Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering”, Colloids and Surfaces. B, Biointerfaces, Colloids Surf B Biointerfaces, Vol. 57 No. 2, pp. 250–255, doi: 10.1016/J.COLSURFB.2007.02.004.
Hu, S. and de Vos, P. (2019), “Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation”, Frontiers in Bioengineering and Biotechnology, Front Bioeng Biotechnol, Vol. 7, doi: 10.3389/FBIOE.2019.00134.
Ichihara, Y., Utoh, R., Yamada, M., Shimizu, T. and Uchigata, Y. (2016), “Size effect of engineered islets prepared using microfabricated wells on islet cell function and arrangement”, Heliyon, Heliyon, Vol. 2 No. 6, doi: 10.1016/J.HELIYON.2016.E00129.
Kildeeva, N., Chalykh, A., Belokon, M., Petrova, T., Matveev, V., Svidchenko, E., Surin, N., et al. (2020), “Influence of Genipin Crosslinking on the Properties of Chitosan-Based Films”, Polymers, Polymers (Basel), Vol. 12 No. 5, doi: 10.3390/POLYM12051086.
Klein, M.P., Hackenhaar, C.R., Lorenzoni, A.S.G., Rodrigues, R.C., Costa, T.M.H., Ninow, J.L. and Hertz, P.F. (2016), “Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and β-D-galactosidase immobilization”, Carbohydrate Polymers, Carbohydr Polym, Vol. 137, pp. 184–190, doi: 10.1016/J.CARBPOL.2015.10.069.
Lammert, E., Gu, G., McLaughlin, M., Brown, D., Brekken, R., Murtaugh, L.C., Gerber, H.P., et al. (2003), “Role of VEGF-A in vascularization of pancreatic islets”, Current Biology : CB, Curr Biol, Vol. 13 No. 12, pp. 1070–1074, doi: 10.1016/S0960-9822(03)00378-6.
De Leu, N., Heremans, Y., Coppens, V., Van Gassen, N., Cai, Y., D’Hoker, J., Magenheim, J., et al. (2014), “Short-term overexpression of VEGF-A in mouse beta cells indirectly stimulates their proliferation and protects against diabetes”, Diabetologia, Springer, Vol. 57 No. 1, pp. 140–147, doi: 10.1007/S00125-013-3076-9/FIGURES/5.
Li, B.-B., Yin, Y.-X., Yan, Q.-J., Wang, X.-Y. and Li, S.-P. (2016), “A novel bioactive nerve conduit for the repair of peripheral nerve injury.”, Neural Regeneration Research, Editorial Board of Neural Regeneration Research, Vol. 11 No. 1, pp. 150–5, doi: 10.4103/1673-5374.175062.
Madden, L.R., Mortisen, D.J., Sussman, E.M., Dupras, S.K., Fugate, J.A., Cuy, J.L., Hauch, K.D., et al. (2010), “Proangiogenic scaffolds as functional templates for cardiac tissue engineering”, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, Vol. 107 No. 34, pp. 15211–15216, doi: 10.1073/PNAS.1006442107/-/DCSUPPLEMENTAL.
Maji, K., Dasgupta, S., Pramanik, K. and Bissoyi, A. (2016), “Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering”, International Journal of Biomaterials, Int J Biomater, Vol. 2016, doi: 10.1155/2016/9825659.
Maniruzzaman, M., Rahman, M.J., Ahammed, B. and Abedin, M.M. (2020), “Classification and prediction of diabetes disease using machine learning paradigm”, Health Information Science and Systems, Health Inf Sci Syst, Vol. 8 No. 1, doi: 10.1007/S13755-019-0095-Z.
Nishiyama, N. and Yokoyama, T. (2017), “Permeability of porous media: Role of the critical pore size”, Journal of Geophysical Research: Solid Earth, Blackwell Publishing Ltd, Vol. 122 No. 9, pp. 6955–6971, doi: 10.1002/2016JB013793.
Norris, J.M., Johnson, R.K. and Stene, L.C. (2020), “Type 1 diabetes-early life origins and changing epidemiology”, The Lancet. Diabetes & Endocrinology, Lancet Diabetes Endocrinol, Vol. 8 No. 3, pp. 226–238, doi: 10.1016/S2213-8587(19)30412-7.
Parton, L.E., Ye, C.P., Coppari, R., Enriori, P.J., Choi, B., Zhang, C.Y., Xu, C., et al. (2007), “Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity”, Nature, Nature, Vol. 449 No. 7159, pp. 228–232, doi: 10.1038/NATURE06098.
Phelps, E.A., Templeman, K.L., Thulé, P.M. and García, A.J. (2015), “Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization”, Drug Delivery and Translational Research, Drug Deliv Transl Res, Vol. 5 No. 2, pp. 125–136, doi: 10.1007/S13346-013-0142-2.
Queiroz, M.F., Melo, K.R.T., Sabry, D.A., Sassaki, G.L. and Rocha, H.A.O. (2015), “Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation?”, Marine Drugs, Multidisciplinary Digital Publishing Institute (MDPI), Vol. 13 No. 1, p. 141, doi: 10.3390/MD13010141.
Sánchez-Cardona, Y., Echeverri-Cuartas, C.E., López, M.E.L. and Moreno-Castellanos, N. (2021), “Chitosan/Gelatin/PVA Scaffolds for Beta Pancreatic Cell Culture”, Polymers, Polymers (Basel), Vol. 13 No. 14, doi: 10.3390/POLYM13142372.
Shi, G., Cai, Q., Wang, C., Lu, N., Wang, S. and Bei, J. (2002), “Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)”, Polymers for Advanced Technologies, John Wiley & Sons, Ltd, Vol. 13 No. 3–4, pp. 227–232, doi: 10.1002/PAT.178.
Song, S. and Roy, S. (2016), “Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices”, Biotechnology and Bioengineering, Biotechnol Bioeng, Vol. 113 No. 7, pp. 1381–1402, doi: 10.1002/BIT.25895.
Staels, W., Heremans, Y., Heimberg, H. and De Leu, N. (2019), “VEGF-A and blood vessels: a beta cell perspective”, Diabetologia, Diabetologia, Vol. 62 No. 11, pp. 1961–1968, doi: 10.1007/S00125-019-4969-Z.
Tavares, L., Esparza Flores, E.E., Rodrigues, R.C., Hertz, P.F. and Noreña, C.P.Z. (2020), “Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads”, Food Hydrocolloids, Elsevier, Vol. 106, p. 105876, doi: 10.1016/J.FOODHYD.2020.105876.
Yang, K., O’Cearbhaill, E.D., Liu, S.S., Zhou, A., Chitnis, G.D., Hamilos, A.E., Xu, J., et al. (2021), “A therapeutic convection-enhanced macroencapsulation device for enhancing β cell viability and insulin secretion”, Proceedings of the National Academy of Sciences of the United States of America, Proc Natl Acad Sci U S A, Vol. 118 No. 37, p. 1DUMMUY, doi: 10.1073/PNAS.2101258118.
Zhang, C.Y., Baffy, G., Perret, P., Krauss, S., Peroni, O., Grujic, D., Hagen, T., et al. (2001), “Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes”, Cell, Cell, Vol. 105 No. 6, pp. 745–755, doi: 10.1016/S0092-8674(01)00378-6.
Zhang, C.Y., Parton, L.E., Ye, C.P., Krauss, S., Shen, R., Lin, C.T., Porco, J.A., et al. (2006), “Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced β cell dysfunction in isolated pancreatic islets”, Cell Metabolism, Cell Press, Vol. 3 No. 6, pp. 417–427, doi: 10.1016/J.CMET.2006.04.010.
Zhang, L., Vincent, M.A., Richards, S.M., Clerk, L.H., Rattigan, S., Clark, M.G. and Barrett, E.J. (2004), “Insulin sensitivity of muscle capillary recruitment in vivo”, Diabetes, Diabetes, Vol. 53 No. 2, pp. 447–453, doi: 10.2337/DIABETES.53.2.447.
Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S. and Zhao, K. (2018), “Biomedical Applications of Chitosan and Its Derivative Nanoparticles”, Polymers, Multidisciplinary Digital Publishing Institute (MDPI), Vol. 10 No. 4, doi: 10.3390/POLYM10040462.