Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular
Design and construction capacitive electric field equipment for cell stimulation
Contenido principal del artículo
Resumen
RESUMEN
La búsqueda de alternativas para tratamientos al cáncer que puedan ser de bajo costo, menos invasivos y con menores efectos secundarios, sigue siendo un tema de continuo interés. El estudio de un sistema combinado de campos eléctricos de bajo voltaje con nanomateriales, estos últimos actuando como nanovectores, en el tratamiento de cáncer ha mostrado resultados prometedores. En este trabajo se presenta el diseño, simulación y construcción de un equipo estimulador eléctrico tipo capacitivo de bajo voltaje para estimular células tipo fibrobastos normales y tipo melanoma combinadas con nanopartículas de oro. El equipo permite variación en voltaje, frecuencia, intensidad de corriente, forma de onda y ciclo de dureza. El diseño fue realizado en la plataforma Arduino Due, llevado a Eagle para el desarrollo PCB y con visualización en pantalla LCD. El generador construido es finalmente conectado a un par de placas paralelas encargadas del campo eléctrico que será inducido. De las variables entregadas por el equipo se encontraron exactitudes inferiores al 1,5% lo que garantiza el cumplimiento técnico del equipo en las variables necesarias.Descargas
Detalles del artículo
Referencias (VER)
Araujo, T. S. (2015). Modulation of electrical stimulation applied to human physiology and clinical diagnostic. Lisboa: Universidade Nova Lisboa. Fundación para la Ciencia y la Tecnología.
Balakatounis K, Angoules A. (2008) ‘Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury’. Journal of Plactic Surgery. 8:283-91.
Camapana LG., et. al. (2009) ‘Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients’, Ann. Surg. Oncol. 16 191–199.
Cemazar M., et. al. (2009) ‘Control by pulse parameters of DNA electrotransfer into solid tumors in mice’, Gene Ther. 16 635–644.
Esser A.T., et. al. (2007) ‘Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue’, Technol. Cancer Res. Treat. 6 (2007) 261–274.
Gehl J, et. al. (2006) ‘Results of the ESOPE (European Standard Operating Procedures on Electrochemotherapy) study: efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneousmetastases fromcancers of any histology’, J. Clin. Oncol. 24 s8047 (Suppl).
Gehl, (2003) ‘Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research’, Acta Physiol. Scand. 177 437–447.
Gintautas S, (1997) ‘Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments’, Biophys. J. 73 1299–1309.
Jankovic A, Binic I. (2008) ‘Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers’. Arch Dermatol Res. 2008;300(7):377-83.
Kasivisvanathan V, et. al. (2012) ‘A. Thapar, Y. Oskrochi, J. Picard, E.L.S. Leen, Irreversible electroporation for focal ablation at the porta hepatis’, Cardiovasc. Intervent. Radiol. 35 1531–1534.
Kozinsky B, et. al. (2006) ‘Static dielectric properties of carbon nanotubes from first principles’, Phys. Rev. Lett. 96 166801.
Lee S, et. al., (2014) ‘Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry’, ACS Nano 8 2048–2063.
Lekner, (2014) ‘Electroporation in cancer therapy without insertion of electrodes’, Phys. Med. Biol. 59 6031–6042.
Maeda H., (2010) ‘Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects’, Bioconjug. Chem. 21 797–802.
Marty M., et. al. (2006) ‘Electrochemotherapy — an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study’, EJC Suppl. 4 3–13.
Matsumura Y., Maeda H., (1986). ‘A new concept for macromolecular therapeutics in cáncer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS’, Cancer Res. 46 pag. 6387–6392.
Miklavčič D, et. al. (2012) ‘Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors’, Med. Biol. Eng. Comput. 50 1213–1225.
Neumann E, et. al. (1999) ‘Fundamentals of electroporative delivery of drugs and genes, Bioelectrochem’. Bioenerg. 48 3–16.
Neumann E, et. al. (1982) ‘Gene transfer into mouse lyoma cells by electroporation in high electric fields’, EMBO J. 1 841–845.
Pamela E., et. al. (2010 ‘Electrical Stimulation Therapy Increases Rate of Healing of Pressure Ulcers in Community-Dwelling People With Spinal Cord Injury’. Archives of Physical Medicine and Rehabilitation. Volume 91, Issue 5, Pages 669-678.
Pei-Chi Lee et. al. (2016) ‘Combining the single-walled carbon nanotubes with low voltaje electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy’. Journal of Controlled Release 225 140–151.
Raffa V, et. al. (2010) ‘Carbon nanotubeenhanced cell electropermeabilisation’, Bioelectrochemistry 79 136–141.
Saito R, et. al. (2010) ‘Physical Properties of Carbon Nanotube’, Imperial College Press, London, 2010 1–29.
Sano K, et. al. (2013) ‘Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors’, ACS Nano 7 717–724.
Satkauskas S, et. al. (2005) ‘Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration’, Bioelectrochemistry 65 105–111.
Shahini M, et. al. (2013) ‘Cell electroporation by CNT-featured microfluidic chip’, Lab Chip 13 2585–2590.
Stylianopoulos T, (2013) ‘EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors’, Ther. Deliv. 4 421–423.
Titomirov AV, et. al. (1991) ‘In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA’, Biochim. Biophys. Acta 1088 (1991) 131–134.
Wang L, et. al. (2015) ‘Cuschieri, Tumour cell membrane poration and ablation by pulsed low-intensity electric field with carbon nanotubes’, Int. J. Mol. Sci. 16 6890–6901.
Zhong Y, et. al. (2014) ‘Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy’, Biomacromolecules 15 1955–1969.