Efecto de tratamientos en agregados reciclados sobre las propiedades en estado fresco y endurecido de concretos autocompactantes.

Effect of treatment in recycled aggregate on properties in fresh and hardened state of self compacting concrete.

Contenido principal del artículo

Yimmy Fernando Silva Urrego
Alejandro Arcila Castro
Silvio Delvasto

Resumen

La utilización de agregados reciclados provenientes de residuos de construcción y demolición (RCD) en nuevas obras civiles se considera el camino hacia la sostenibilidad. Esta investigación presenta la posibilidad del uso de agregado grueso reciclado (AGR) y agregado grueso tratado (AGT) de concreto en la elaboración de concretos autocompactantes (CAC). Para este propósito, dos métodos de tratamiento se realizaron a los AGR, uno de los tratamientos fue mediante desgaste mecánico en un molino de bolas y el otro fue mediante la  inmersión en una solución acida (H2SO4) combinado con el desgaste mecánico. Para investigar el efecto de los AGR tratados sobre las propiedades mecánicas de los CACs, diferentes niveles de reemplazo (0%, 20% 40% y 100% en volumen) de agregado grueso natural (AGN) por AGR y AGT se realizaron. En estado fresco se evaluó capacidad de flujo, capacidad de paso y capacidad de llenado mediante el flujo de asentamiento con cono de Abrams, embudo en V y caja en L; y en estado endurecido se realizaron pruebas de resistencia a la compresión, tracción indirecta y flexión a los CACs. Los resultados muestran que los CAC con AGR presentaron una disminución en el desempeño de las propiedades en estado fresco y endurecido debido a la presencia del mortero adherido en este tipo de agregados, sin embargo, su trabajabilidad se encontró dentro de los parámetros establecidos por la EFNARC. Las propiedades mecánicas de los CAC con AGT presentaron un mejor desempeño en comparación a los CAC con AGR, debido al retiro del motero adherido mejorando la resistencia a la compresión todas las mezclas. Además, los CAC con AGT mostraron mejoras en las propiedades de permeabilidad presentando una reducción de porosidad de hasta un 6,06%.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Yimmy Fernando Silva Urrego, Universidad del Valle

Estudiante de doctorado en Ingeniería con énfasis en ingeniería de materiales, de la Universidad del Valle.

Referencias (VER)

Ahmad Bhat, J. (2021) Effect of strength of parent concrete on the mechanical properties of recycled aggregate concrete. Materials Today: Proceedings. 42: 1462-1469. https://doi.org/10.1016/j.matpr.2021.01.310

Aslani F., Ma G., Law Yim Wan D., Muselin G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production. 182: 553-566. https://doi.org/10.1016/j.jclepro.2018.02.074

Bahrami N., Zohrabi M., Mahmoudy S.L., Akbari M. (2020). Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties. Journal of Building Engineering. 31: 101361. https://doi.org/10.1016/j.jobe.2020.101361

Beeby, A.W. Naranayan, R.S. (1995) Designers Handbook to Eurocode 2 Part I: Design of Concrete Structures, Thomas Telford Services Ltd., London.

Behera M., Bhattacharyya S.K., Minocha A.K., Deoliya R., Maiti S. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. 68:501-516.

Behera M., Minocha A.K., Bhattacharyya S.K. (2019). Flow behavior, microstructure, strength and shrinkage properties of self-compacting concrete incorporating recycled fine aggregate. Construction and Building Materials. 228:116819 https://doi.org/10.1016/j.conbuildmat.2019.116819

Carro-López, D., González-Fonteboa, B., De Brito, J., Martínez-Abella, F., González-Taboada, I., & Silva, P. (2015). Study of the rheology of self-compacting concrete with fine recycled concrete aggregates. Construction and Building Materials, 96, 491–501. https://doi.org/10.1016/j.conbuildmat.2015.08.091.

Chinnu, S.N., Minnu, S.N., Bahurudeen, A. Senthilkumar, R. (2021). Recycling of industrial and agricultural wastes as alternative coarse aggregates: A step towards cleaner production of concrete. Construction and Building Materials. 287: 123056. https://doi.org/10.1016/j.conbuildmat.2021.123056.

Duan, Z., Singh, A., Xiao, J., Hou, S. (2020). Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete. Construction and Building Materials. 254: 119232. https://doi.org/10.1016/j.conbuildmat.2020.119323.

EFNARC (2002). Specification and guidelines for self-compacting concrete. European association for pro¬ducers and applicators of specialist building products. [Online] Disponible en: http://www.efnarc.org/pdf/ SandGforSCC.PDF.

EPG (2005). BIBM, CEMBUREAU, ERMCO, EFCA, EFNARC. (2005) The European guidelines for selfcompacting concrete: specification, production and use. The Self Compacting Concrete European Project Group. Disponible en: http://www.efca.info/download/ european-guidelines-for-self-compacting-concrete-scc/.

Güneyisi E., Gesoglu M., Algın Z., Yazıcı H. (2014). Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates. Construction and Building Materials. 64: 172-183. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.090

Ismail, S., Ramli, M. (2013). Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Construction and Building Materials. 44: 464-476. http://dx.doi.org/10.1016/j.conbuildmat.2013.03.014

Kabirifar K., Mojtahedi M., Wang C., Tam V.W.Y. (2020). Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production. 263: 121265. https://doi.org/10.1016/j.jclepro.2020.121265

Kapoor, K., Singh, S.P., Singh, B. (2016). Durability of self-compacting concrete made with Recycled Concrete Aggregates and mineral admixtures. Construction and Building Materials. 128: 67-76. http://dx.doi.org/10.1016/j.conbuildmat.2016.10.026

Kapoor, K., Singh, S.P., Singh, B., Singh, P. (2020). Effect of recycled aggregates on fresh and hardened properties of self compacting concrete. Materials Today: Proceedings. 32: 600-607. https://doi.org/10.1016/j.matpr.2020.02.753

Kazmi S.M.S., Munir M.J., Wu Y-F., Patnaikun I., Zhou Y. Xing F. (2019). Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study. Cement and Concrete Composites. 104: 103398. https://doi.org/10.1016/j.cemconcomp.2019.103398

Kesler, C. E. (1954). Statistical Relation Between Cylinder, Modified Cube, and Beam Strength of Plain Concrete. ASTM Proc., Vol. 54, pp. 1178-1187.

Kou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032

Lopez Ruiz L.A., Ramón X.R., Domingo S.G. (2020). The circular economy in the construction and demolition waste sector e A review and an integrative model approach. Journal of Cleaner Production. 248:119238. https://doi.org/10.1016/j.jclepro.2019.119238.

Menegaki M., Damigos D. (2018). A review on current situation and challenges of construction and demolition waste management. Current Opinion in Green and Sustainable Chemistry 12:8-15. https://doi.org/10.1016/j.cogsc.2018.02.010

Miniambeinte (2020). Minambiente reglamenta manejo y disposición de residuos de construcción y escombros. Dispoible en: https://www.minambiente.gov.co/index.php/noticias-minambiente/2681-minambiente-reglamenta-manejo-y-disposicion-de-residuos-de-construccion-y-escombros.

Modani, P.O., Mohitkar, V.M. (2014). Self-compacting concrete with recycled aggregate: a solution for sustainable development, Int. J. Civil. Struct. Eng. 4 (3) 430–440. Doi: 10.6088/ijcser.201304010041

Mohammed, S.I.; Najim K.B. (2020). Mechanical strength, flexural behavior and fracture energy of Recycled Concrete Aggregate self-compacting concrete. Structures, 23:34-43. https://doi.org/10.1016/j.istruc.2019.09.010

Revilla-Cuesta V., Skaf M., Faleschini F., Manso J.M. (2020). Self-compacting concrete manufactured with recycled concrete aggregate: An overview. Journal of Cleaner Production. 262: 121362. https://doi.org/10.1016/j.jclepro.2020.121362

Safiuddin, M., salam, M. a., Jumaat, M.Z. (2011). Effects of recycled concrete aggregate on the fresh properties of self-consolidating concrete. Archives of Civil and Mechanical Engineering. 11(4): 1023–1041. https://doi.org/10.1016/S1644-9665(12)60093-4

Saravanakumar, P., Abhiram, K., Manoj, B. (2016). Properties of treated recycled aggregates and its influence on concrete strength characteristics. Construction and Building Materials. 111: 611–617. https://doi.org/10.1016/j.conbuildmat.2016.02.064

Shi, C.J., Li Y.K., Zhang, J.K., Li W.G., Chong L.L., Xie Z.B. (2016). Performance enhancement of recycled concrete aggregate – A review. Journal of Cleaner Production. 112 (1): 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057

Silva, Y.F., Lange, D.A., Delvasto, S. Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials. 196: 277-283. https://doi.org/10.1016/j.conbuildmat.2018.11.132.

Silva, Y.F., Robayo, R.F., Mattey, P.E., Delvasto, S. Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete. Construction and Building Materials. 124: 639-644. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.057.

Triantafyllou, D., Ahmed, A., & Kamau, J. (2017). Performance of Recycled Aggregate Concrete after Washing Treatment of Aggregates. European Journal of Engineering Research and Science. 2(9): 49-53. https://doi.org/10.24018/ejers.2017.2.9.468.

Wang R. Yu N., Li Y. (2020). Methods for improving the microstructure of recycled concrete aggregate: A review. Construction and Building Materials. 242: 118164. https://doi.org/10.1016/j.conbuildmat.2020.118164

Yang, R., Yu R., Shui Z., Gao X., Xiao X., Fan D., Che Z., Cai J., Li X., He Y. (2020). Feasibility analysis of treating recycled rock dust as an environmentally friendly alternative material in Ultra-High Performance Concrete (UHPC). Journal of Cleaner Production. 258: 120673. https://doi.org/10.1016/j.jclepro.2020.120673.