Detección en tiempo real de fibrilación auricular en computador de placa reducida
Real-time detection of atrial fibrillation on single board computer
Contenido principal del artículo
Resumen
El desarrollo de dispositivos portables, que permita la detección en tiempo real de fibrilación auricular, requiere la implementación de algoritmos de reconocimiento automático de patrones con la metodología adecuada para su ejecución en sistemas embebidos. En el presente artículo se expone la implementación de una red neuronal artificial (ANN), una máquina de soporte vectorial (SVM) y un algoritmo de K vecinos más cercanos (KNN) en un computador de placa reducida para así comparar su desempeño en cuanto a la capacidad de detección de esta arritmia y el tiempo de respuesta asociado en su ejecución en tiempo real. La base de datos MIT-BIH AFIB es usada para el entrenamiento y validación de los algoritmos previa extracción de parámetros asociados a la transformada wavelet estacionaria. Se encontraron resultados entre el 92% y 97% para la sensibilidad y especificidad de los algoritmos mencionados y tiempos de respuesta variados entre 6 s y 7,1 s
Descargas
Detalles del artículo
Referencias (VER)
A. A. Basaif, S. Aljunid, N. Sabri, M. I. Omer, and M. Salim, “Design and implementation of an embedded system to analysis an ecg signal for heart diagnosis system,” Journal of Theoretical and Applied Information Technology, vol. 91, no. 2, p. 289, 2016.
A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. DOI: 10.1161/01.CIR.101.23.e215
C. Rodriguez, J. Gallego, I. D. Mora, A. Orozco-Duque, and J. Bustamante, “Clasificación de latidos de contracción ventricular prematura basados en métodos de aprendizaje no supervisado” Revista Ingeniería Biomédica, vol. 8, no. 15, p. 51, 2014. DOI: 0.24050/19099762.n15.2014.608
D. Batista and A. Fred, “Spectral and time domain parameters for the classification of atrial fibrillation,” in Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015), 2015, pp. 329–337.
D. F. Ransohoff, “Rules of evidence for cancer molecular-marker discovery and validation,” Nature Reviews Cancer, vol. 4, no. 4, p. 309, 2004. DOI: 10.1038/nrc1322
D. J. Gladstone, R. Spring et al., “Atrial fibrillation in patients with cryptogenic stroke,” New England Journal of Medicine, vol. 370, no. 26, pp. 2467–2477, 2014. DOI: 10.1056/NEJMoa1311376
D. I. Vanegas-Cadavid, “Uso del monitor cardiaco implantable en fibrilación auricular,” Revista Colombiana de Cardiología, vol. 23, pp. 34–39, 2016. DOI: 10.1016/j.rccar.2016.10.031
G. Mora-Pabón, “Utilidad del monitor externo de eventos en el tratamiento del paciente con fibrilación auricular,” Revista Colombiana de Cardiología, vol. 23, pp. 40–43, 2016. DOI:10.1016/j.rccar.2016.11.005
H. W. Lim, Y. W. Hau, C. W. Lim, and M. A. Othman, “Artificial intelligence classification methods of atrial fibrillation with implementation technology,” Computer Assisted Surgery, vol. 21, no. sup1, pp. 154–161, 2016. DOI: 10.1080/24699322.2016.1240303
J. J. Carvajal, C. Clavijo, L. J. Bautista, and G. Mora, “Características clínicas de pacientes llevados a monitoría externa de eventos,” Revista Colombiana de Cardiología, vol. 21, no. 5, pp. 278–283, 2014. DOI: 10.1016/j.rccar.2013.11.001
J. Pérez-Rodon, J. Francisco-Pascual, N. Rivas-G´andara, I. Roca-Luque, N. Bellera, and A` . Moya-Mitjans, “Cryptogenic stroke and role of loop recorder,” Journal of Atrial Fibrillation, vol. 7, no. 4, 2014. DOI: 10.4022/jafib.1178.
J. Vogler, G. Breithardt, and L. Eckardt, “Bradiarritmias y bloqueos de la conducción,” Revista Española de Cardiología, vol. 65, no. 7, pp. 656–667, 2012. DOI: 10.1016/j.recesp.2012.01.025
L. Villa-Rodríguez, J. D. Lemos-Duque et al., “Desarrollo de un holter digital con grabación de eventos y software de visualización,” Revista ingeniería biomédica, 2014. DOI: 10.24050/19099762.n7.2010.84
M. A. Rockx, J. S. Hoch, and Klein, “Is ambulatory monitoring for “community-acquired” syncope economically attractive? A cost-effectiveness analysis of a randomized trial of external loop recorders versus Holter monitoring,” American heart journal, vol. 150, no. 5, pp. 1065–e1, 2005. DOI: 10.1016/j.ahj.2005.08.003
M. R. Homaeinezhad, S. Atyabi, E. Tavakkoli, H. N. Toosi, A. Ghaffari, and R. Ebrahimpour, “Ecg arrhythmia recognition via a neuro-svm–knn hybrid classifier with virtual qrs image-based geometrical features,” Expert Systems with Applications, vol. 39, no. 2, pp. 2047– 2058, 2012. DOI:10.1016/j.eswa.2011.08.025
N. Larburu, T. Lopetegi, and I. Romero, “Comparative study of algorithms for atrial fibrillation detection,” in Computing in Cardiology, 2011. IEEE, 2011, pp. 265–268.
P. Zimetbaum and A. Goldman, “Ambulatory arrhythmia monitoring,” Circulation, vol. 122, no. 16, pp. 1629 – 1636, 2010. DOI: 10.1161/CIRCULATIONAHA.109.925610
Q. He, B. Segee, and V. Weaver, “Raspberry pi 2 b gpu power, performance, and energy implications,” in Computational Science and Computational Intelligence (CSCI), 2016 International Conference on. IEEE, 2016, pp. 163–167. DOI: 10.1109/CSCI.2016.0038
R. Colloca, A. E. Johnson, L. Mainardi, and G. D. Clifford, “A support vector machine approach for reliable detection of atrial fibrillation events,” in Computing in Cardiology Conference (CinC), 2013. IEEE, 2013, pp.1047–1050.
R. J. Martis, U. R. Acharya, and H. Adeli, “Current methods in electrocardiogram characterization,” Computers in biology and medicine, vol. 48, pp. 133–149, 2014. DOI: 10.1016/j.compbiomed.2014.02.012
S. Asgari, A. Mehrnia, and M. Moussavi, “Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine,” Computers in biology and medicine, vol. 60, pp. 132–142, 2015. DOI: 10.1016/j.compbiomed.2015.03.005
S. Mittal, C. Movsowitz, and J. S. Steinberg, “Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation,” Journal of the American College of Cardiology, vol. 58, no. 17, pp. 1741–1749, 2011. DOI: 10.1016/j.jacc.2011.07.026.
S. Sovilj, G. Rajsman, and R. Magjarevi´c, “Ecg based prediction of atrial fibrillation using support vector classifier,” AUTOMATIKA: Journal of Automation, Measurement, Electronics, Computing and Communications, vol. 52, no. 1, pp. 58–67, 2011. DOI: 10.1080/00051144.2011.11828404
S. Raj, S. Luthra, and K. C. Ray, “Development of handheld cardiac event monitoring system,” IFACPapersOnLine, vol. 48, no. 4, pp. 71–76, 2015. DOI: 10.1016/j.ifacol.2015.07.010
T. Jeon, B. Kim, M. Jeon, and B.-G. Lee, “Implementation of a portable device for real-time ecg signal analysis,” Biomedical engineering online, vol. 13, no. 1, p. 160, 2014. DOI:10.1186/1475-925X-13-160.
W. contributors, “K-nearest neighbors algorithm wikipedia the free encyclopedia,” 2018, [Online; accessed 9-October-2021]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=K-nearest neighbors algorithm&oldid=827389390